1 |
Understanding Mechanics and Polarity in Two-Dimensional TissuesStaple, Douglas 28 March 2012 (has links) (PDF)
During development, cells consume energy, divide, rearrange, and die. Bulk properties such as viscosity and elasticity emerge from cell-scale mechanics and dynamics. Order appears, for example in patterns of hair outgrowth, or in the predominately hexagonal pattern of cell boundaries in the wing of a fruit fly. In the past fifty years, much progress has been made in understanding tissues as living materials. However, the physical mechanisms underlying tissue-scale behaviour are not completely understood. Here we apply theories from statistical physics and fluid dynamics to understand mechanics and order in two-dimensional tissues. We restrict our attention to the mechanics and dynamics of cell boundaries and vertices, and to planar polarity, a type of long-ranged order visible in anisotropic patterns of proteins and hair outgrowth.
Our principle tool for understanding mechanics and dynamics is a vertex model where cell shapes are represented using polygons. We analytically derive the ground-state diagram of this vertex model, finding it to be dominated by the geometric requirement that cells be polygons, and the topological requirement that those polygons tile the plane. We present a simplified algorithm for cell division and growth, and furthermore derive a dynamic equation for the vertex model, which we use to demonstrate the emergence of quasistatic behaviour in the limit of slow growth. All our results relating to the vertex model are consistent with and build off past calculations and experiments.
To investigate the emergence of planar polarity, we develop quantification methods for cell flow and planar polarity based on confocal microscope images of developing fly wings. We analyze cell flow using a velocity gradient tensor, which is uniquely decomposed into terms corresponding to local compression, shear, and rotations. We argue that a pattern in an inhomogeneously flowing tissue will necessarily be reorganized, motivating a hydrodynamic theory of polarity reorientation. Using such a coarse-grained theory of polarity reorientation, we show that the quantified patterns of shear and rotation in the wing are consistent with the observed polarity reorganization, and conclude that cell flow reorients planar polarity in the wing of the fruit fly. Finally, we present a cell-scale model of planar polarity based on the vertex model, unifying the themes of this thesis.
|
2 |
Dynamics and mechanics of compartment boundaries in developing tissuesAliee, Maryam 02 July 2013 (has links) (PDF)
During development of tissues, cells collectively organize to form complex patterns and morphologies. A general feature of many developing epithelia is their distinct organization into cellular compartments of different cell lineages. The interfaces between these compartments, called compartment boundaries, maintain straight and sharp morphologies. The interfaces play key roles in tissue development and pattern formation. An important model system to study the morphology of compartment boundaries during development is the wing disc of the fruit fly. Two compartment boundaries exist in the fly wing disc, the anteroposterior (AP) boundary and the dorsoventral (DV) boundary. A crucial question is how compartment boundaries are shaped and remain stable during growth.
In this work, we discuss the dynamics and mechanisms of compartment boundaries in developing epithelia. We analyze the general features of interfacial phenomena in coarse- grained models of passive and active fluids. We introduce a continuum description of tissues with two cell types. This model allows us to study the propagation of interfaces due to the interplay of cell dynamics and tissue mechanics. We also use a vertex model to describe cellular compartments in growing epithelia. The vertex model accounts for cell mechanics and describes a 2D picture of tissues where the network of adherens junctions characterizes cell shapes. We use this model to study the general physical mechanisms by which compartment boundaries are shaped. We quantify the stresses in the cellular network and discuss how cell mechanics and growth influence the stress profile. With the help of the anisotropic stress profile near the interfaces we calculate the interfacial tension. We show that cell area pressure, cell proliferation rate, orientation of cell division, cell elongation created by external stress, and cell bond tension all have distinct effects on the morphology of interfaces during tissue growth. Furthermore, we investigate how much different mechanisms contribute to the effective interfacial tension.
We study the mechanisms shaping the DV boundary in wing imaginal disc at different stages during the development. We analyze the images of wing discs to quantify the roughness of the DV boundary and average cell elongation in its vicinity. We quantify increased cell bond tension along the boundary and analyze the role of localized reduction in cell proliferation on the morphology of the DV boundary. We use experimentally determined values for cell bond tension, cell elongation and bias in orientation of cell division in simulations of tissue growth in order to reproduce the main features of the time-evolution of the DV boundary shape.
|
3 |
Investigation of the biophysical basis for cell organelle morphologyMayer, Jürgen 09 February 2010 (has links) (PDF)
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry.
Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images.
|
4 |
Nonlinear dynamics and fluctuations in biological systems / Nichtlineare Dynamik und Fluktuationen in biologischen SystemenFriedrich, Benjamin M. 26 March 2018 (has links) (PDF)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations.
We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization.
In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn).
In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems.
On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden). / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen.
In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt.
In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.
|
Page generated in 0.0129 seconds