Spelling suggestions: "subject:"dão diferenciáveis"" "subject:"dão diferenciální""
1 |
Convexidade generalizada em problemas de controle ótimo com tempo livre /Villanueva, Fabiola Roxana. January 2015 (has links)
Orientador: Valeriano Antunes de Oliveira / Banca: Lucelina Batista dos Santos / Banca: Geraldo Nunes Silva / Resumo: Neste trabalho estudamos condicões necessárias e suficientes de otimalidade para problemas de controle ótimo com tempos finais livres, compreendendo o estudo do Princípio do Máximo e convexidade generalizada. Apresentamos as condições necessárias do princípio do máximo com tempos finais fixos e do princípio do máximo com tempos finais livres. Logo apresentamos as condições suficientes para problemas de controle ótimo com tempos finais fixos; introduzimos duas definições de convexidade generalizada, a primeira denominada PML-pseudoinvexidade, que envolve os multiplicadores de Lagrange e, a segunda denominada PM-pseudoinvexidade, que não envolve os multiplicadores de Lagrange. Mostramos que para um problema PML-pseudoinvexo todos os PM-processos (processos de controle que satisfazem as condições necessárias do princípio do máximo) são processos ótimos e reciprocamente os problemas tais que todos os PM-processos são ótimos, são problemas PML-pseudoinvexos; também mostramos que sob algumas condições, PML-pseudoinvexidade e equivalente a PM-pseudoinvexidade. Finalmente apresentamos as condições suficientes para problemas de controle ótimo com tempos finais livres; introduzimos uma de de nição de convexidade generalizada denominada PM-pseudoinvexidade livre, que não envolve os multiplicadores de Lagrange. Mostramos que sob algumas condições, se o problema e PM-pseudoinvexo livre, então todo PM-processo normal e um processo ótimo; também mostramos que sob algumas condições, se o problema e tal que todo PM-processo e um processo ótimo, então o problema e PM-pseudoinvexo livre / Abstract: In this work we study necessary and sufficient optimality conditions for free end-time optimal control problems, comprising the study of the Maximum Principle and generalized convexity. We introduce the necessary conditions of the xed end-time maximum principle and of the free end-time maximum principle. Next, we present sufficient conditions for xed end-time optimal control problems; we introduce two de nitions of generalized con- vexity, the rst called LMP-pseudoinvexity, which involves the Lagrange multipliers and the second called MP-pseudoinvexity, which does not involve the Lagrange multipliers. We show that for a LMP-pseudoinvex problem all the MP-processes (control processes that satisfy the necessary conditions of the maximum principle) are optimal processes and con- versely the problems such that all the MP-processes are optimal, are LMP-pseudoinvex problems; also we show that under some conditions, LMP-pseudoinvexity is equivalent to MP-pseudoinvexity. Finally, we present sufficient conditions for free end-time optimal control problem; we introduce a de nition of generalized convexity called MP-free pseudoinvexity, which does not involve the Lagrange multipliers. We show that under some conditions, if the problem is MP-free pseudoinvex, then all normal MP-processes are optimal; also we show that under some conditions, if the problem is such that every MP-process is an optimal process, then the problem is MP-free pseudoinvex / Mestre
|
2 |
Convexidade generalizada em problemas de controle ótimo com tempo livreVillanueva, Fabiola Roxana [UNESP] 20 February 2014 (has links) (PDF)
Made available in DSpace on 2015-09-17T15:24:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2014-02-20. Added 1 bitstream(s) on 2015-09-17T15:48:08Z : No. of bitstreams: 1
000843899.pdf: 517994 bytes, checksum: a54791f8368518a4a957793e48d72808 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Neste trabalho estudamos condicões necessárias e suficientes de otimalidade para problemas de controle ótimo com tempos finais livres, compreendendo o estudo do Princípio do Máximo e convexidade generalizada. Apresentamos as condições necessárias do princípio do máximo com tempos finais fixos e do princípio do máximo com tempos finais livres. Logo apresentamos as condições suficientes para problemas de controle ótimo com tempos finais fixos; introduzimos duas definições de convexidade generalizada, a primeira denominada PML-pseudoinvexidade, que envolve os multiplicadores de Lagrange e, a segunda denominada PM-pseudoinvexidade, que não envolve os multiplicadores de Lagrange. Mostramos que para um problema PML-pseudoinvexo todos os PM-processos (processos de controle que satisfazem as condições necessárias do princípio do máximo) são processos ótimos e reciprocamente os problemas tais que todos os PM-processos são ótimos, são problemas PML-pseudoinvexos; também mostramos que sob algumas condições, PML-pseudoinvexidade e equivalente a PM-pseudoinvexidade. Finalmente apresentamos as condições suficientes para problemas de controle ótimo com tempos finais livres; introduzimos uma de de nição de convexidade generalizada denominada PM-pseudoinvexidade livre, que não envolve os multiplicadores de Lagrange. Mostramos que sob algumas condições, se o problema e PM-pseudoinvexo livre, então todo PM-processo normal e um processo ótimo; também mostramos que sob algumas condições, se o problema e tal que todo PM-processo e um processo ótimo, então o problema e PM-pseudoinvexo livre / In this work we study necessary and sufficient optimality conditions for free end-time optimal control problems, comprising the study of the Maximum Principle and generalized convexity. We introduce the necessary conditions of the xed end-time maximum principle and of the free end-time maximum principle. Next, we present sufficient conditions for xed end-time optimal control problems; we introduce two de nitions of generalized con- vexity, the rst called LMP-pseudoinvexity, which involves the Lagrange multipliers and the second called MP-pseudoinvexity, which does not involve the Lagrange multipliers. We show that for a LMP-pseudoinvex problem all the MP-processes (control processes that satisfy the necessary conditions of the maximum principle) are optimal processes and con- versely the problems such that all the MP-processes are optimal, are LMP-pseudoinvex problems; also we show that under some conditions, LMP-pseudoinvexity is equivalent to MP-pseudoinvexity. Finally, we present sufficient conditions for free end-time optimal control problem; we introduce a de nition of generalized convexity called MP-free pseudoinvexity, which does not involve the Lagrange multipliers. We show that under some conditions, if the problem is MP-free pseudoinvex, then all normal MP-processes are optimal; also we show that under some conditions, if the problem is such that every MP-process is an optimal process, then the problem is MP-free pseudoinvex
|
3 |
Métodos subgradientes em otimização convexa não diferenciável / Subgradients methods for otimization of nondiferentiable convex functionSouza, Théssera Christine Araújo de 29 August 2008 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-07T13:13:38Z
No. of bitstreams: 1
thesserachristinearaujodesouza.pdf: 806744 bytes, checksum: 46be79df1b2c6a463dc51bc0b211dae8 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-07T15:04:56Z (GMT) No. of bitstreams: 1
thesserachristinearaujodesouza.pdf: 806744 bytes, checksum: 46be79df1b2c6a463dc51bc0b211dae8 (MD5) / Made available in DSpace on 2017-03-07T15:04:56Z (GMT). No. of bitstreams: 1
thesserachristinearaujodesouza.pdf: 806744 bytes, checksum: 46be79df1b2c6a463dc51bc0b211dae8 (MD5)
Previous issue date: 2008-08-29 / Este trabalho tem por finalidade descrever o Estado da Arte acerca de
Métodos Subgradientes para otimização de funções convexas não diferenciáveis.
Apresenta-se inicialmente um histórico desses métodos, conceitos básicos sobre
otimização diferenciável, necessários para o entendimento de certas noções
importantes referentes à problemas não diferenciáveis, bem como esses problemas e
suas características próprias. Posteriormente, apresenta-se uma breve introdução
aos métodos não diferenciáveis para, então dedicar-se ao objetivo principal do
trabalho que são os Métodos Subgradientes, suas extensões e trabalhos recentes.
Finaliza-se a Dissertação com a apresentação de algumas aplicações, seus
resultados e conclusões. / The goal of this work is describe the State of the Art about Subgradients
Methods for optimization of nondifferentiable convex functions. We initially present a
historical of these methods, basic concepts on differentiable optimization, necessary
to the comprehension of certain important notions about nondifferentiable problems,
as well as these problems and its own characteristics. Subsequently, a short
introduction about nondifferentiable methods is presented for, then, devote to
Subgradients Methods, its extensions and recent works. The Dissertation is finished
with the presentation of some applications, its results and conclusions.
|
4 |
Algumas contribuições em otimização multiobjetivoSantos, Lucelina Batista dos 26 February 2004 (has links)
Orientadores: Marko A. Rojas Medar, Rafaela Osuna Gomez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T20:15:50Z (GMT). No. of bitstreams: 1
Santos_LucelinaBatistados_D.pdf: 3422141 bytes, checksum: bc4a2465caf8858862afc59db64a0e3c (MD5)
Previous issue date: 2004 / Resumo: Neste trabalho, estudamos o problema de otimização vetorial entre espaços de Banach quanto a condições necessárias e suficientes de otimalidade. Para isto, utilizamos diferentes noções de convexidade generalizada. Na Primeira Parte tratamos o problema (Fréchet) diferenciável. Mostramos que as soluções fracamente eficientes de tais problemas podem ser completamente caracterizadas em termos de condições estacionárias e de convexidade generalizadas (pseudoinvexidade, no caso do problema multiobjetivo irrestrito e KT-invexidade, para o problema com restrições de desigualdade). Na Segunda Parte, discutimos o problema não diferenciável. Estabelecemos um resultado de existência de soluções fracamente eficientes e uma caracterização de soluções fracamente eficientes via desigualdades quase-variacionais. Também discutimos condições de otimalidade através de cones de aproximação local e de K-derivadas. Além disto, obtivemos condições de segunda ordem através das noções de Hessiana e Derivadas Direcionais de segunda ordem generalizados (Cominetti e Correa). Na Terceira Parte, consideramos dois problemas específicos de otimização multiobjetivo não diferenciável: o problema fracionário multiobjetivo e o problema de tempo contínuo multiobjetivo / Doutorado / Doutor em Matemática Aplicada
|
5 |
Sobre algumas contribuições em otimização não diferenciavel invexaBrandão, Adilson Jose Vieira 18 May 1998 (has links)
Orientador: Marko Antonio Rojas Medar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-23T14:06:36Z (GMT). No. of bitstreams: 1
Brandao_AdilsonJoseVieira_D.pdf: 1521597 bytes, checksum: ad199230c81dd8500956738c837d725c (MD5)
Previous issue date: 1998 / Resumo: Nosso objetivo neste trabalho de tese é estudar alguns problemas de otimização onde estabelecemos, entre outros resultados, condições suficientes de otimalidade global sem nenhuma hipótese de convexidade ou diferenciabilidade. As técnicas para se atacar tais problemas são a análise não diferenciável devida ao matemático canadense Clarke e o conceito de convexidade generalizada, chamado invexidade, introduzido pelo matemático americano Hanson, as quais são detalhadas no capítulo 1. No capítulo 2 estudamos alguns problemas de programação matemática estabelecendo condições suficientes de otimalidade global e dualidade. De posse desses resultados estabelecemos nosso principal resultado na seção: um teorema de alternativa invexo do tipo Gordan, onde as funções envolvidas são localmente Lipschitz e invexas. No capítulo 3 obtemos condições suficientes de otimalidade global na forma de uma regra de multiplicadores para um problema de otimização entre espaços de Banach. No capítulo 4 obtemos condições suficientes de otimalidade global na forma de uma regra de multiplicadores para um problema de programação matemática com tempo contínuo o qual estende os resultados obtidos pelo matemático americano Zalmai para o mesmo problema no caso diferenciável. Também estabelecemos condições suficientes de 2a. ordem utilizando a noção de Hessiano generalizado introduzida pelos matemáticos chilenos Cominetti e Correa. No último capítulo damos algumas direções de pesquisa futura dentro da área de otimização não diferenciável. / Abstract: Not informed / Doutorado / Doutor em Matemática Aplicada
|
6 |
Análise não-diferenciável e condições necessárias de otimalidade para problema de controle ótimo com restrições mistasIzelli, Reginaldo César [UNESP] 12 September 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-09-12Bitstream added on 2014-06-13T19:47:37Z : No. of bitstreams: 1
izelli_rc_me_sjrp.pdf: 916240 bytes, checksum: 24bbf9996f6955ca38766b92b37822c8 (MD5) / Estamos interessados em estudar uma generalização do Princípio do Máximo de Pontryagin para problema de controle ótimo com restrições mistas envolvendo funções nãodiferenciáveis, pois este princípio não se aplica para todos os tipos de problemas. O principal objetivo deste trabalho é apresentar as condições necessárias de otimalidade na forma do princípio do máximo que serão aplicadas para o problema de controle ótimo com restrições mistas envolvendo funções não-diferenciáveis. Para alcançar este objetivo apresentamos estudos sobre cones normais e cones tangentes os quais são utilizados no desenvolvimento da teoria de subdiferenciais. Após esse embasamento formulamos o problema de controle ótimo envolvendo funções não-diferenciáveis, e apresentamos as condições necessárias de otimalidade. / We are interested in study a generalization of the Pontryagin Maximum Principle for optimal control problems with mixed constraints involving nondi erentiable functions, because this principle can not be applied for all the types of problems. The main objective of this work is to present the necessary conditions of optimality in the form of the maximum principle that will be applied for the optimal control problem with mixed constraints involving nondi erentiable functions. To achieve this objective we present studies above normal cones and tangent cones which are used in the development of the theory of subdi erentials. After this foundation we formulate the optimal control problem involving nondi erentiable functions, and we present the necessary conditions of optimality.
|
7 |
Método subgradiente incremental para otimização convexa não diferenciável / Incremental subgradient method for nondifferentiable convex optimizationAdona, Vando Antônio 18 December 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-26T12:20:46Z
No. of bitstreams: 2
Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-27T10:48:07Z (GMT) No. of bitstreams: 2
Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-27T10:48:07Z (GMT). No. of bitstreams: 2
Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-12-18 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / We consider an optimization problem for which the objective function is the sum of
convex functions, not necessarily differentiable. We study a subgradient method that
executes the iterations incrementally selecting each component function sequentially
and processing the subgradient iteration individually. We analyze different alternatives
for choosing the step length, highlighting the convergence properties for each case. We
also analyze the incremental model in other methods, considering proximal iteration and
combinations of subgradient and proximal iterations. This incremental approach has been
very successful when the number of component functions is large. / Consideramos um problema de otimização cuja função objetivo consiste na soma de funções
convexas, não necessariamente diferenciáveis. Estudamos um método subgradiente
que executa a iteração de forma incremental, selecionando cada função componente de
maneira sequencial e processando a iteração subgradiente individualmente. Analisamos
diferentes alternativas para a escolha do comprimento de passo, destacando as propriedades
de convergência para cada caso. Abordamos também o modelo incremental em outros
métodos, considerando iteração proximal e combinações de iterações subgradiente e proximal.
Esta abordagem incremental tem sido muito bem sucedida quando o número de
funções componentes é grande.
|
8 |
Método de direções interiores ao epígrafo para a solução de problemas de otimização não-convexos e não-diferenciáveis via dualidade lagrangeanaGómez, Jesús Cernades 07 June 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-03-31T11:28:07Z
No. of bitstreams: 1
jesuscernadesgomez.pdf: 1031961 bytes, checksum: 184ef4c8e577aada634107338cd8a4ee (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T02:56:11Z (GMT) No. of bitstreams: 1
jesuscernadesgomez.pdf: 1031961 bytes, checksum: 184ef4c8e577aada634107338cd8a4ee (MD5) / Made available in DSpace on 2016-04-24T02:56:11Z (GMT). No. of bitstreams: 1
jesuscernadesgomez.pdf: 1031961 bytes, checksum: 184ef4c8e577aada634107338cd8a4ee (MD5)
Previous issue date: 2013-06-07 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho tem por finalidade apresentar um método para a solução de problemas de otimização
não-convexos e não-diferenciáveis. O método, chamado IED (Interior Epigraph Directions),
aplica-se a problemas de otimização cuja função objetivo é contínua e definida em um
subconjunto compacto de Rn, sujeita a restrições de igualdade e/ou desigualdade.
O método IED considera o problema dual induzido por uma função lagrangeana aumentada e
obtém a solução primal gerando uma sequêmcia de pontos no interior do epígrafo da função
dual. Primeiramente, um subgradiente é usado para gerar uma aproximação linear do problema
dual. Em seguida, usa-se esta aproximação linear para definir-se uma direção de busca interior
ao epígrafo da função dual. Obtém-se então, a partir de um ponto no interior do epígrafo, um
novo ponto interior e, consequêntemente, uma sequência de pontos interiores é construida. Essa
sequência produz uma sequência dual que por sua vez origina uma sequência primal, através da
solução de um subproblema originado pela dualidade.
A análise de convergência do algoritmo é também apresentada bem como resultados numéricos
da solução de problema extraídos da literatura. / This work presents a method for solving constrained nonsmooth and nonconvex optimization
problems. Themethod, called IED (Interior Epigraph Directions) can be applied to optimization
problems with continuos objective functions defined over compact subsets of Rn and subjected
to equalities and/or inequalities constraints.
The IED method considers the dual problem induced by a generalized augmented Lagrangian
function and obtains the primal solution by generating a sequence of iterates in the interior
of the dual function. First, a subgradient is used to build a linear approximation to the dual
problem. Then, this linear approximation is used to define a search direction in the interior of
the dual function. From an interior point of the epigraph, a new point is obtained and an interior
sequence to the epigraph is built, This sequence of interior points generates a dual sequence
which in its turn generates a primal sequence by solving a problem originated by duality.
The convergence analysis is also presented as well as numerical result of several problems
obtained from de literature.
|
9 |
Metodo de direções interiores ao epígrafo - IED para otimização não diferenciável e não convexa via Dualidade Lagrangeana: estratégias para minimização da Lagrangeana aumentadaFranco, Hernando José Rocha 08 June 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-07-12T12:23:47Z
No. of bitstreams: 1
hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-07-17T11:56:13Z (GMT) No. of bitstreams: 1
hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5) / Made available in DSpace on 2018-07-17T11:56:13Z (GMT). No. of bitstreams: 1
hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5)
Previous issue date: 2018-06-08 / A teoria clássica de otimização presume a existência de certas condições, por exemplo, que as funções envolvidas em um problema desta natureza sejam pelo menos uma vez continuamente diferenciáveis. Entretanto, em muitas aplicações práticas que requerem o emprego de métodos de otimização, essa característica não se encontra presente. Problemas de otimização não diferenciáveis são considerados mais difíceis de lidar. Nesta classe, aqueles que envolvem funções não convexas são ainda mais complexos. O Interior Epigraph Directions (IED) é um método de otimização que se baseia na teoria da Dualidade Lagrangeana e se aplica à resolução de problemas não diferenciáveis, não convexos e com restrições. Neste estudo, apresentamos duas novas versões para o referido método a partir de implementações computacionais de outros algoritmos. A primeira versão, denominada IED+NFDNA, recebeu a incorporação de uma implementação do algoritmo Nonsmooth Feasible Direction Nonconvex Algorithm (NFDNA). Esta versão, ao ser aplicada em experimentos numéricos com problemas teste da literatura, apresentou desempenho satisfatório quando comparada ao IED original e a outros solvers de otimização. Com o objetivo de aperfeiçoar mais o método, reduzindo sua dependência de parâmetros iniciais e também do cálculo de subgradientes, uma segunda versão, IED+GA, foi desenvolvida com a utilização de algoritmos genéticos. Além da resolução de problemas teste, o IED-FGA obteve bons resultados quando aplicado a problemas de engenharia. / The classical theory of optimization assumes the existence of certain conditions, for example, that the functions involved in a problem of this nature are at least once continuously differentiable. However, in many practical applications that require the use of optimization methods, this characteristic is not present. Non-differentiable optimization problems are considered more difficult to deal with. In this class, those involving nonconvex functions are even more complex. Interior Epigraph Directions (IED) is an optimization method that is based on Lagrangean duality theory and applies to the resolution of non-differentiable, non-convex and constrained problems. In this study, we present two new versions for this method from computational implementations of other algorithms. The first version, called IED + NFDNA, received the incorporation of an implementation of the Nonsmooth Feasible Direction Nonconvex Algorithm (NFDNA) algorithm. This version, when applied in numerical experiments with problems in the literature, presented satisfactory performance when compared to the original IED and other optimization solvers. A second version, IED + GA, was developed with the use of genetic algorithms in order to further refine the method, reducing its dependence on initial parameters and also on the calculation of subgradients. In addition to solving test problems, IED + GA achieved good results when applied to engineering problems.
|
10 |
Comportamento do método de direções interiores ao epígrafo (IED) quando aplicado a problemas de programação em dois níveisOliveira, Erick Mário do Nascimento 26 June 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-09-04T12:20:42Z
No. of bitstreams: 1
erickmariodonascimentooliveira.pdf: 3492871 bytes, checksum: 845fa85f6d95efe2e7ad13563f342bc3 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-09-04T13:21:49Z (GMT) No. of bitstreams: 1
erickmariodonascimentooliveira.pdf: 3492871 bytes, checksum: 845fa85f6d95efe2e7ad13563f342bc3 (MD5) / Made available in DSpace on 2018-09-04T13:21:49Z (GMT). No. of bitstreams: 1
erickmariodonascimentooliveira.pdf: 3492871 bytes, checksum: 845fa85f6d95efe2e7ad13563f342bc3 (MD5)
Previous issue date: 2018-06-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho é apresentado o comportamento do algoritmo IED quando aplicado
a problemas de programação em dois níveis. Para isso, o problema do seguidor é
substituído pelas condições necessárias de primeira ordem de Karush-Kuhn-Tucker e,
dessa maneira, o problema de programação em dois níveis é transformado em um problema de otimização com restrições não lineares. Dessa forma, as condições necessárias para utilização do algoritmo IED (Interior Epigraph Directions) são satisfeitas. Esse método tem como característica resolver problemas de otimização não convexa e não diferenciáveis via utilização da técnica de dualidade Lagrangiana, onde as funções de restrições são introduzidas na função objetivo para formar a função Lagrangiana. Além disso, o método considera o problema dual induzido por um esquema generalizado da dualidade Lagrangiana aumentada e obtém a solução primal produzindo uma sequência de pontos no interior do epígrafo da função dual. Dessa forma, o valor da função dual, em algum ponto do espaço dual, é dado pela minimização da Lagrangiana. Por fim, experimentos numéricos são apresentados em relação à utilização do algoritmo IED em problemas de programação em dois níveis encontrados na literatura. / This work presents the behavior of the IED algorithm when applied to bilevel
programming problems. For this, the follower problem is replaced by the first-order
necessary Karush-Kuhn-Tucker’s conditions and thus, the problem of bilevel programming turns into an optimization problem with non-linear constraints. Thus, the conditions required for use of the IED (Interior Epigraph Directions) algorithm are satisfied. This method has the characteristic of solving non-convex and non-differentiable optimization problems using the Lagrangian duality technique, where the constraint functions are introduced into the objective function for formulation of the Lagrangian. Furthermore, the method considers the dual problem induced by a generalized scheme of augmented Lagrangian duality and obtains the primal solution by producing a sequence of points inside the dual function epigraph. Then the value of the dual function, at some point in the dual space, is given by Lagrangian minimization. Finally, numerical experiments are presented showing the use of the IED algorithm in bilevel programming problems found in the literature.
|
Page generated in 0.0723 seconds