• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problemas elípticos semilineares com não linearidades do tipo côncavo-convexo / Semilinear elliptic problems with concave-convex nonlinearities

Sousa, Karla Carolina Vicente de 01 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-03T18:04:36Z No. of bitstreams: 2 Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T10:40:35Z (GMT) No. of bitstreams: 2 Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-06T10:40:35Z (GMT). No. of bitstreams: 2 Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-01 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we study the existence of positive solutions for the following semilinear elliptic problem with concave-convex nonlinearities    −∆u = λa(x)u q +b(x)u p , x ∈ Ω u = 0, x ∈ ∂Ω where Ω is a bounded domain in R N with smooth boundary and 0 < q < 1 < p < 2 ∗−1 (where 2∗−1 = +∞, if N = 1 or N = 2 and 2∗−1 = N+2 N−2 , where N ≥ 3). Furthermore, λ > 0 is a parameter and a,b : Ω → R are continuous functions which are somewhere positives, however, such functions may change sign in Ω. / Neste trabalho estudaremos a existência de soluções positivas para o seguinte problema elíptico semilinear com não linearidades do tipo côncavo-conexo    −∆u = λa(x)u q +b(x)u p , x ∈ Ω u = 0, x ∈ ∂Ω onde Ω é uma domínio limitado de R N , com bordo regular e 0 < q < 1 < p < 2 ∗ −1 (onde 2∗ −1 = +∞, se N = 1 ou N = 2 e 2∗ −1 = N+2 N−2 , quando N ≥ 3). Além disso, λ > 0 é um parâmetro e a,b : Ω → R são funções contínuas que assumem valores positivos, porém, tais funções podem mudar de sinal em Ω.
2

Multiplicidade de soluções para uma classe de problemas elípticos de quarta ordem com condição de contorno de Navier / Multiplicity of solutions for a class of fourth-order elliptic problems under Navier conditions

Cavalcante, Thiago Rodrigues 27 February 2018 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2018-03-23T22:13:05Z No. of bitstreams: 2 Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-26T12:16:44Z (GMT) No. of bitstreams: 2 Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-26T12:16:44Z (GMT). No. of bitstreams: 2 Tese - Thiago Rodrigues Cavalcante - 2018.pdf: 2200622 bytes, checksum: 39118adda6b7ceff14825da442b5be57 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In the first two chapters, we consider the following problem \begin{equation*} \left \{ \begin{array}{rcll} \alpha \Delta^{2} u + \beta \Delta u & = & f(x,u)\, & \mbox{in}\,\, \Omega \\ u = \Delta u & = & 0 \, &\mbox{on } \,\,\, \partial \Omega, \end{array} \right. \end{equation*} where $\displaystyle{\Delta^{2} u = \Delta(\Delta u)-\,\mbox{biharmonic (fourth-order operator)}}$, $\alpha > 0$ and $ \beta \in \R.$ The subset $\displaystyle{ \Omega \subset \mathbb{R}^{N}\, (N \geq 4)}$ is as somooth bounded domain and $\displaystyle{ f \in C(\overline{\Omega} \times \mathbb{R},\mathbb{R}) }.$ In each of the results obtained, we will consider different technical hypotheses and characteristics for the nonlinear function $f$ e for the value of the constant $ \beta. $ In the third chapter, we study an equation of the concave type super linear, of the form: \begin{equation} \left \{ \begin{array}{rcll} \alpha \Delta^{2} u + \beta \Delta u & = & a(x)|u|^{s-2}u + f(x,u)\, & \mbox{in}\,\, \Omega \\ u = \Delta u & = & 0 \, &\mbox{on} \,\,\, \partial \Omega, \end{array} \right. \end{equation} where $\beta \in (-\infty, \alpha \lambda_{1}).$ We consider that the function $a \in L^{\infty} (\Omega)$ and $s \in (1,2).$ Finally, in the last chapter we will consider a fourth order problem in which nonlinearity is also of the convex concave type. More precisely, we study the following class of equations: \begin{equation} \left\{ \begin{aligned} \alpha \Delta^{2} u + \beta \Delta u & = \mu a(x)|u|^{q-2}u + b(x)|u|^{p-2}u&\,\,\,\,\ &\mbox{in}\,\, \Omega \\ u = \Delta u & = 0 & \,\,\,\,&\mbox{on} \,\, \partial \Omega, \end{aligned} \right. \end{equation} where the parameter $ \mu > 0 $, the powers $ 1 <q <2 <p <2 N / (N - 4) $. In addition we assume that the functions $ \displaystyle {a, b: \Omega \rightarrow \mathbb {R}}$ are continuous that can change signal and, $ a ^{+}, b ^{+} \neq 0. $ / Nos dois primeiros Capítulos, consideramos a seguinte classe de problemas: \begin{equation*} \left \{ \begin{array}{rcll} \alpha \Delta^{2} u + \beta \Delta u & = & f(x,u)\, & \mbox{em}\,\, \Omega \\ u = \Delta u & = & 0 \, &\mbox{sobre } \,\,\, \partial \Omega, \end{array} \right. \end{equation*} onde $\displaystyle{\Delta^{2} u = \Delta(\Delta u)-\,\mbox{biharmônico},}$ $\alpha > 0$ e $ \beta \in \R.$ O subconjunto $\displaystyle{ \Omega \subset \mathbb{R}^{N}\,(N \geq 4)}$ será um domínio limitado e a não linearidade $\displaystyle{ f \in C(\overline{\Omega} \times \mathbb{R},\mathbb{R}) }.$ Em cada um dos resultados obtidos, consideraremos hipóteses técnicas e características diferentes para a função não linear $f$ e para o valor da constante $\beta.$ No terceiro Capítulo, estudamos uma equação do tipo côncavo super linear, da forma: \begin{equation*} \left \{ \begin{array}{rcll} \alpha \Delta^{2} u + \beta \Delta u & = & a(x)|u|^{s-2}u + f(x,u)\, & \mbox{em}\,\, \Omega \\ u = \Delta u & = & 0 \, &\mbox{sobre } \,\,\, \partial \Omega, \end{array} \right. \end{equation*} onde $\alpha > 0$ e $\beta \in (-\infty, \alpha \lambda_{1})$. Consideramos que a função $a \in L^{\infty}(\Omega)$ e que $s \in (1,2).$ Por fim, no último Capítulo vamos considerar um problema de quarta ordem no qual a não linearidade é do tipo côncavo-convexa. Mais precisamente, estudamos a seguinte classe de equações: \begin{equation*} \left\{ \begin{aligned} \alpha \Delta^{2} u + \beta \Delta u & = \mu a(x)|u|^{q-2}u + b(x)|u|^{p-2}u&\,\,\,\,\ &\mbox{em}\,\, \Omega \\ u = \Delta u & = 0 & \,\,\,\,&\mbox{sobre} \,\, \partial \Omega, \end{aligned} \right. \end{equation*} onde o parâmetro $\mu > 0$ e as potências $ 1 < q < 2 < p < 2 N /(N - 4)$. Adicionalmente supomos que as funções $\displaystyle{a, b : \Omega \rightarrow \mathbb{R} }$ sejam contínuas podendo trocar de sinal em $\Omega$ e que $a^{+},b^{+} \neq 0.$

Page generated in 0.3634 seconds