311 |
Colloidal nanocrystals with near-infrared optical properties : synthesis, characterization, and applicationsPanthani, Matthew George 05 April 2013 (has links)
Colloidal nanocrystals with optical properties in the near-infrared (NIR) are of interest for many applications such as photovoltaic (PV) energy conversion, bioimaging, and therapeutics. For PVs and other electronic devices, challenges in using colloidal nanomaterials often deal with the surfaces. Because of the high surface-to-volume ratio of small nanocrystals, surfaces and interfaces play an enhanced role in the properties of nanocrystal films and devices.
Organic ligand-capped CuInSe2 (CIS) and Cu(InXGa1-X)Se2 (CIGS) nanocrystals were synthesized and used as the absorber layer in prototype solar cells. By fabricating devices from spray-coated CuInSe nanocrystals under ambient conditions, solar-to-electric power conversion efficiencies as high as 3.1% were achieved. Many treatments of the nanocrystal films were explored. Although some treatments increased the conductivity of the nanocrystal films, the best devices were from untreated CIS films. By modifying the reaction chemistry, quantum-confined CuInSeXS2-X (CISS) nanocrystals were produced. The potential of the CISS nanocrystals for targeted bioimaging was demonstrated via oral delivery to mice and imaging of nanocrystal fluorescence.
The size-dependent photoluminescence of Si nanocrystals was measured. Si nanocrystals supported on graphene were characterized by conventional transmission electron microscopy and spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM). Enhanced imaging contrast and resolution was achieved by using Cs-corrected STEM with a graphene support. In addition, clear imaging of defects and the organic-inorganic interface was enabled by utilizing this technique. / text
|
312 |
Multiscale modeling of formation and structure of oxide embedded silicon and germanium nanocrystalsYu, Decai 28 August 2008 (has links)
Not available / text
|
313 |
Silicon nanowires, carbon nanotubes, and magnetic nanocrystals: synthesis, properties, and applicationsLee, Doh Chang, 1978- 28 August 2008 (has links)
Central to the practical use of nanoscale materials is the controlled growth in technologically meaningful quantities. Many of the proposed applications of the nanomaterials potentially require inexpensive production of the building blocks. Solution-based synthetic approach offers controllability, high throughput, and scalability, which make the process attractive for the potential scale-up. Growth kinetics could be readily influenced by chemical interactions between the precursor and the solvent. In order to fully utilize its benefits, it is therefore pivotal to understand the decomposition chemistry of the precursors used in the reactions. Supercritical fluids were used as solvent in which high temperature reactions could take place. Silicon nanowires with diameters of 20~30 nm was synthesized in supercritical fluids with metal nanocrystals as seeds for the nanowire growth. To unravel the effect of silicon precursors, several silicon precursors were reacted and the resulting products were investigated. The scalability of the system is discussed based on the experimental data. The nanowires were characterized with various characterization tools, including high-resolution transmission electron microscopy and electron energy loss spectroscopy. The crystallographic signatures were analyzed through the transmission electron microscopic study, and fundamental electrical and optical properties were probed by electron energy loss spectroscopy. Carbon nanotubes were prepared by reacting carbon-containing chemicals in supercritical fluids with organometallic compounds that form metal seed particles in-situ. A batch reaction, in which the temperature control was relatively poor, yielded a mixture of multiwall nanotubes and amorphous carbon nanofilaments with a low selectivity of nanotubes in the product. When reaction parameters were translated into a continuous flow-through reaction, nanotube selectivity as well as the throughput of the total product significantly improved. Magnetic properties of various metal nanocrystals were also studied. Colloidal synthesis enables the growth of FePt and MnPt3 nanocrystals with size uniformity. The as-synthesized nanocrystals, however, had compositionally disordered soft-magnetic phases. To obtain hard magnetic layered phase, the nanocrystals must be annealed at high temperatures, which led to sintering of the inorganic cores. To prevent sintering, the nanocrystals were encapsulated with silica layer prior to annealing. Interparticle magnetic interactions were also explored using particles with varying silica thickness. / text
|
314 |
Investigation into the Formation of Nanoparticles of Tetravalent Neptunium in Slightly Alkaline Aqueous SolutionHusar, Richard 25 August 2015 (has links) (PDF)
Considering the worldwide growing discharge of minor actinides and the current need for geological disposal facilities for radioactive waste, this work provides a contribution to the safety case concerning Np transport if it would be released from deep repository sites and moving from alkaline cement conditions (near-field) to more neutral environmental conditions (far-field). The reducing conditions in a nuclear waste repository render neptunium tetravalent, which is assumed to be immobile in aqueous environment due to the low solubility solution of Np(IV). For tetravalent actinide nuclides, the most significant transport should occur via colloidal particles. This work demonstrates the formation of intrinsic neptunium dioxide nanocrystals and amorphous Np(IV) silica colloids under environmentally relevant conditions.
The dissociation of the initial soluble Np(IV) complex (i.e. [Np(IV)(CO3)5]6-) induces the intrinsic formation of nanocrystalline NpO2 in the solution phase. The resulting irregularly shaped nanocrystals with an average size of 4 nm exhibit a face-centered cubic (fcc), fluorite-type structure (space group ). The NCs tend to agglomerate under ambient conditions due to the weakly charged hydrodynamic surface at neutral pH (zetapotential ~0 mV). The formation of micron-sized agglomerates, composed of nanocrystals of 2-5 nm in size, and the subsequent precipitation cause immobilization of the major amount of Np(IV) in the Np carbonate system. Agglomeration of NpO2 nanocrystals in dependence on time was indicated by PCS and UV-vis absorption spectroscopy with the changes of baseline characteristics and absorption maximum at 742 nm.
Hitherto, unknown polynuclear species as intermediate species of NpO2 nanocrystal formation were isolated from solution and observed by HR-TEM. These polynuclear Np species appear as dimers, trimers and hexanuclear compounds in analogy with those reported for other actinides.
Intrinsic formation of NpO2 (fcc) nanocrystals under ambient environmental conditions is prevented by admixing silicic acid: amorphous Np(IV) silica colloids are formed when silicate is present in carbonate solution.
Herein, the initial molar ratio of Si to Np in solution lead to the formation of Np(IV) silica particles of different composition and size where Si content determines the structure and stability of resulting colloids. Implications for different electronic structures of Np(IV) in dependence on Si content in the solid phase are given by the shift of the absorption maximum at 742 nm characteristic for Np(IV) colloids, silica excess of 5 times the magnitude of Si to Np reveal a redshift up to 6 nm in the colloidal UV-vis spectrum. Precipitation of Np(IV) particles in the ternary system results in a different coordination sphere of Np(IV) compared to the binary system, and the incorporation of Si into internal structure of Np(IV) silica colloids in coffinite-like structure is confirmed by EXAFS. TEM confirms different kinds of particle morphologies in dependence on the silica content. Silica-poor systems reveal porous particles in the micron-range which consist of irregular cross-linked hydrolyzed Np(IV) silica compartments with pores <15 nm.
In contrast, long-term stabilized and silica-enriched systems are characterized by isolated particles with an average particle size of 45 nm. Agglomerates of such isolated Np(IV) silica particles appear as consolidated amorphous solids with a densely closed surface and exhibit no internal fractures. The latter mentioned morphology of Np(IV) silica particles might facilitate the migration behavior of Np(IV) in a stabilized colloidal form under environmental conditions. The silica-enriched particles with densely closed surface are long-term stabilized as colloidal dispersion (>1 year) due to repulsion effects caused by significant surface charge. Particles synthesized from Si/Np = 9/1 carry exclusively negative surface charge in nearly the whole pH range from pH 3 to pH 10 with zetapotential = (-) 5 to (-) 30 mV. The zeta potentials of all particle systems containing silica are significantly shifted to more negative values below pH 7 where the isoelectrical point shifts from pH = 8.0 to 2.6 effecting negative charge under ambient conditions which supports electrostatic stabilization of Np(IV) particles. Particle surface charge at the slipping plane, particle size and shape necessarily depend on the initial magnitude of Si content in solution during particle formation. Particular changes of the morphology and internal structure of different Np(IV) silica colloids by aging are indicated by TEM and XPS. The composition and the crystallinity state of the initially formed amorphous phases partially changed into well-ordered nanocrystalline units characterized with fcc structure.
The presence of silicate under conditions expected in a nuclear waste repository significantly influences the solubility of Np(IV) and provoke the stabilization of waterborne Np(IV) up to concentrations of 10-3 M, exceeding Np´s solubility limit by a factor of up 10.000.
Neptunium and silicate significantly interact with each other, and thereby changing their individual hydrolysis and polymerization behavior. Silicate prevents the intrinsic formation of NpO2 NCs in fcc-structure, and at the same time, Np(IV) prevents the polymerization of silicate. Both processes result in the formation of Np(IV) silica colloids which possibly influence the migration behavior and fate of Np in the waste repositories and surrounding environments. For tetravalent actinides in general, the most significant transport in the environment would occur by colloidal particles. Therefore, Np(IV) silica colloids could have a significant implication in the migration of Np, the important minor actinide in the waste repositories, via colloidal transport.
|
315 |
Preparation and stability of organic nanocrystals : experimental and molecular simulation studiesKhan, Shahzeb January 2012 (has links)
A major challenge affecting the likelihood of a new drug reaching the market is poor oral bioavailability derived from low aqueous solubility. Nanocrystals are rapidly becoming a platform technology to address poor solubility issues, although several challenges including stabilisation and control of particle size distribution for nanosuspensions still need to be addressed. The aim of this study was to revisit the simplest approach of re-precipitation and to identify the critical parameters, including the effect of different stabilisers as well as process conditions. We utilised a combined approach of both experiments and molecular modelling and simulation, not only to determine the optimum parameters but also to gain mechanistic insight. The experimental studies utilised three rather distinct, relatively insoluble drugs, the hypoglycaemic glibenclamide, the anti-inflammatory ibuprofen, and the anti-malarial artemisinin. The choice of crystal growth inhibitors/stabilizers was found to be critical and specific for each drug. The effect of the process variables, temperature, stirring rate, and the solute solution infusion rate into the anti-solvent, was rationalized in terms of how these factors influence the local supersaturation attained at the earliest stages of precipitation. Coarse grained simulation of antisolvent crystallisation confirmed the accepted two step mechanism of nucleation at high supersaturation which involves aggregation of solute particles followed by nucleation. Recovery of nanocrystals from nanosuspensions is also a technical challenge. A novel approach involving the use of carrier particles to recovery the nanocrystals was developed and shown to be able to recover more than 90% of the drug nanocrystals. The phase stability of nanocrystals along with bulk crystals for the model compound glycine was explored using molecular dynamics simulation. The simulations were consistent with experimental data, a highlight being the β phase transforming to the δ phase at temperature >400K and 20kbar respectively, as expected. Nanocrystals of α, β and γ glycine, however did not show any phase transformation at high temperature. In summary the study demonstrates that standard crystallization technology is effective in producing nanocrystals with the primary challenge being physico-chemical (rather than mechanical), involving the identification of molecule-specific crystal growth inhibitors and/or stabilizers. The developed nanocrystal recovery method should enable the production of nanocrystals-based solid dosage forms. The molecular simulation studies reveal that crystal-crystal phase transformations can be predicted for hydrogen-bonded systems.
|
316 |
Aspects of bottom-up engineering : synthesis of silicon nanowires and Langmuir-Blodgett assembly of colloidal nanocrystalsPatel, Reken Niranjan 10 November 2010 (has links)
Central to the implementation of colloidal nanomaterials in commercial applications is the development of high throughput synthesis strategies for technologically relevant materials. Solution based synthesis approaches provide the controllability, high throughput, and scalability needed to meet commercial demand. A flow through supercritical fluid reactor was used to synthesize silicon nanowires in high yield with production rates of ~45 mg/hr. The high temperature and high pressure of the supercritical medium facilitated the decomposition of monophenylsilane and seeded growth of silicon nanowires by gold seeds. Crystalline nanowires with diameters of ~25 nm and lengths greater than 20 [micrometers] were routinely synthesized. Accumulation of nanowires in the reactor resulted in deposition of a conformal amorphous shell on the crystalline surface of the wire. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy were used to determine the shell composition. The shell was identified as polyphenylsilane formed by polymerization of the silicon precursor monophenylsilane. A post synthesis etch was developed to remove the shell while still maintaining the integrity of the crystalline silicon nanowire core. Subsequent surface passivation was achieved through thermal hydrosilylation with a terminal alkene. The development colloidal nanomaterials into commercial applications also requires simple and robust bottom-up assembly strategies to facilitate device fabrication. A Langmuir-Blodgett trough was used to assemble continuous monolayers of hexagonally ordered spherical nanocrystals over areas greater than 1 cm². Patterned monolayers and multilayers of FePt nanocrystals were printed onto substrates using pre-patterned polydimethylsiloxane (PDMS) stamps and a modified Langmuir Schaefer transfer technique. Patterned features, including micrometer-size circles, lines, and squares, could be printed using this approach. The magnetic properties of the printed nanocrystal films were also measured using magnetic force microscopy (MFM). Room temperature MFM could detect a remanent (permanent) magnetization from multilayers (>3 nanocrystals thick) films of chemically-ordered L1₀ FePt nanocrystals. Grazing incidence small angle X-ray scattering was used to quantitatively characterize the grain size, crystal structure, lattice disorder, and edge-to-edge spacing of the nanocrystal films prepared on the Langmuir-Blodgett trough both on the air-water interface and after transfer. / text
|
317 |
Influence of surface passivation on the photoluminescence from silicon nanocrystalsSalivati, Navneethakrishnan 07 January 2011 (has links)
Although silicon (Si) nanostructures exhibit size dependent light emission, which can be attributed to quantum confinement, the role of surface passivation is not yet fully understood. This understanding is central to the development of nanocrystal-based detectors. This study investigated the growth, surface chemistry, passivation with deuterium (D2), ammonia (ND3) and diborane (B2D6) and the resulting optical properties of Si nanostructures.
Si nanocrystals less than 6 nm in diameter are grown on SiO2 surfaces in an ultra high vacuum chamber using hot-wire chemical vapor deposition and the as grown surfaces are exposed to atomic deuterium. Temperature programmed desorption (TPD) spectra show that that the nanocrystals surfaces are covered by a mix of monodeuteride, dideuteride and trideuteride species. The manner of filling of the deuteride states on nanocrystals differs from that for extended surfaces as the formation of the dideuteride and trideuteride species is facilitated by the curvature of the nanocrystal. No photoluminescence (PL) is observed from the as grown unpassivated nanocrystals. As the deuterium dose is increased, the PL intensity also begins to increase. This can be associated with increasing amounts of mono-, di- and trideuteride species on the nanocrystal surface, which results in better passivation of the dangling bonds and relaxing of the reconstructed surface. At high deuterium doses, the surface structure breaks down and amorphization of the top layer of the nanocrystal takes place. Amorphization reduces the PL intensity. Finally, as the nanocrystal size is varied, the PL peak shifts, which is characteristic of quantum confinement.
The dangling bonds and the reconstructed bonds at the NC surface are also passivated and transformed with D and NDx by using deuterated ammonia (ND3), which is predissociated over a hot tungsten filament prior to adsorption. At low hot wire ND3 doses PL emission is observed at 1000 nm corresponding to reconstructed surface bonds capped by predominantly monodeuteride and Si-ND2 species. As the hot wire ND3 dose is increased, di- and trideuteride species form and intense PL is observed around 800 nm that does not shift with NC size and is associated with defect levels resulting from NDx insertion into the strained Si-Si bonds forming Si2=ND. The PL intensity at 800 nm increases as the ND3 dose is increased and the intensity increase is correlated to increasing concentrations of deuterides. At extremely high ND3 doses PL intensity decreases due to amorphization of the NC surface. In separate experiments, Si NCs were subjected to dissociative (thermal) exposures of ammonia followed by exposures to atomic deuterium. These NCs exhibited size dependent PL and this can be attributed to the prevention of the formation of Si2=ND species.
Finally, deuterium-passivated Si NCs are exposed to BDx radicals formed by dissociating deuterated diborane (B2D6) over a hot tungsten filament and photoluminescence quenching is observed. Temperature programmed desorption spectra reveal the presence of low temperature peaks, which can be attributed to deuterium desorption from surface Si atoms bonded to subsurface boron atoms. The subsurface boron likely enhances nonradiative Auger recombination. / text
|
318 |
Investigation of femtosecond laser technology for the fabrication of drug nanocrystals in suspensionKenth, Sukhdeep 12 1900 (has links)
La technique du laser femtoseconde (fs) a été précédemment utilisée pour la production de nanoparticules d'or dans un environnement aqueux biologiquement compatible. Au cours de ce travail de maîtrise, cette méthode a été investiguée en vue d'une application pour la fabrication de nanocristaux de médicament en utilisant le paclitaxel comme modèle. Deux procédés distincts de cette technologie à savoir l'ablation et la fragmentation ont été étudiés. L'influence de la puissance du laser, de point de focalisation, et de la durée du traitement sur la distribution de taille des particules obtenues ainsi que leur intégrité chimique a été évaluée. Les paramètres ont ainsi été optimisés pour la fabrication des nanoparticules. L’évaluation morphologique et chimique a été réalisée par microscopie électronique et spectroscopie infrarouge respectivement. L'état cristallin des nanoparticules de paclitaxel a été caractérisé par calorimétrie differentielle et diffraction des rayons X.
L'optimisation du procédé de production de nanoparticules par laser fs a permis d'obtenir des nanocristaux de taille moyenne (400 nm, polydispersité ≤ 0,3). Cependant une dégradation non négligeable a été observée. La cristallinité du médicament a été maintenue durant la procédure de réduction de taille, mais le paclitaxel anhydre a été transformé en une forme hydratée.
Les résultats de cette étude suggèrent que le laser fs peut générer des nanocristaux de principe actif. Cependant cette technique peut se révéler problématique pour des médicaments sensibles à la dégradation. Grâce à sa facilité d'utilisation et la possibilité de travailler avec des quantités restreintes de produit, le laser fs pourrait représenter une alternative valable pour la production de nanoparticules de médicaments peu solubles lors des phases initiales de développement préclinique.
Mots-clés: paclitaxel, nanocristaux, laser femtoseconde, ablation, fragmentation / Femtosecond (fs) laser ablation and fragmentation, a novel technique based upon the breakdown of material using laser energy was previously used for the production of fine gold nanoparticles in suspension. This technique has been newly investigated for the fabrication of paclitaxel nanocrystals in aqueous solution. In this work, we report the fabrication and characterization of paclitaxel nanocrystals generated by fs laser technology. Two distinct methods of this technology have been explored: ablation and fragmentation. The influence of the laser power, focusing position and treatment time on the particle size, size distribution and chemical integrity of the drug has been studied. Morphology and chemical composition of the finest paclitaxel nanocrystal formulation was studied by scanning electron microscopy and Fourier-transform infrared spectroscopy respectively. Differential scanning calorimetry and X-ray diffraction analyses were employed to evaluate the polymorphic state of the paclitaxel nanocrystals.
Optimal laser fabrication parameters have been established for the fabrication of uniformly small sized paclitaxel nanocrystals. Those optimal conditions generated finely-sized paclitaxel nanoparticles (400 nm, PDI ≤ 0.3) with a considerable degradation. The drug remained crystalline upon nanonization at high power, though the anhydrous crystals were converted to a partially hydrated form.
These findings suggest that drug nanocrystals could be produced using the fs laser technology; however, this technique may be inappropriate for drugs sensitive to degradation. Moreover, the simple fabrication of drug nanocrystals using the fs laser fragmentation presents a great asset for the intial phases of preclinical development of many poorly soluble drug candidates, which are not as sensitive as paclitaxel.
Keywords: paclitaxel, nanocrystals, femtosecond, ablation, fragmentation
|
319 |
Photothermal effects and mesoporous silica encapsulation of silicon nanocrystalsRegli, Sarah Unknown Date
No description available.
|
320 |
Surface modification of group 14 nanocrystalsKelly, Joel Alexander Unknown Date
No description available.
|
Page generated in 0.0262 seconds