• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 233
  • 74
  • 67
  • 43
  • 8
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 667
  • 199
  • 119
  • 116
  • 90
  • 86
  • 84
  • 75
  • 66
  • 65
  • 62
  • 60
  • 58
  • 56
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Synthesis, Characterization, Properties And Growth Of Inorganic Nanomaterials

Biswas, Kanishka 12 1900 (has links)
The thesis consists of eight chapters of which the first chapter presents a brief overview of inorganic nanostructures. Synthesis and magnetic properties of MnO and NiO nanocrystals are described in Chapter 2, with emphasis on the low-temperature ferromagnetic interactions in these antiferromagnetic oxides. Chapter 3 deals with the synthesis and characterizations of nanocrystals of ReO3, RuO2 and IrO2 which are oxides with metallic properties. Pressure-induced phase transitions of ReO3 nanocrystals and the use of the nanocrystals for carrying out surface-enhanced Raman spectroscopy of the molecules form Chapter 4. Use of ionic liquids to synthesize different nanostructures of semiconducting metal sulfides and selenides is described in Chapter 5. Synthesis of Mn-doped GaN nanocrystals and their magnetic properties are described in Chapter 6. A detailed investigation has been carried out on the growth kinetics of nanostructures of a few inorganic materials by using small-angle X-ray scattering and other techniques (Chapter 7). The study includes the growth kinetics of nanocrystals of Au, CdS and CdSe as well as of nanorods of ZnO. Results of a synchrotron X-ray study of the formation of nanocrystalline gold films at the organic-aqueous interface are also included in this chapter. Chapter 8 discuses the use of the organic-aqueous interface to generate Janus nanocrystalline films of inorganic materials where one side of the film is hydrophobic and other side is hydrophilic. This chapter also includes the formation of nanostructured peptide fibrils at the organic-aqueous interface and their use as templates to prepare inorganic nanotubes.
172

Properties And Applications Of Semiconductor And Layered Nanomaterials

Chitara, Basant 03 1900 (has links) (PDF)
This thesis deals with the research work carried out on the properties and applications such as GaN nanoparticles, Graphene etc. Chapter 1 of the thesis gives introduction to nanomaterials and various aspects of the thesis. Chapter 2 of the thesis describes the synthesis of GaN nanocrystals and their use as white light sources and as room temperature gas sensors. It also discusses negative differential resistance above room temperature exhibited by GaN. Electroluminescence from GaN-polymer heterojunction forms the last section of this chapter. Chapter 3 demonstrates the role of defect concentration on the photodetecting properties of ZnO nanorods with different defects prepared at different temperatures. Chapter 4 presents remarkable infrared and ultraviolet photodetector properties of reduced graphene oxide and graphene nanoribbons. Chapter 5 presents the infrared detecting properties of graphene-like few-layer MoS2. The summary of the thesis is given at the end of the thesis.
173

DESIGN AND FABRICATION OF HIGH CAPACITY LITHIUM-ION BATTERIES USING ELECTRO-SPUN GRAPHENE MODIFIED VANADIUM PENTOXIDE CATHODES

Amirhossein Ahmadian (7035998) 17 December 2020 (has links)
<p>Electrospinning has gained immense interests in recent years due to its potential application in various fields, including energy storage application. The V<sub>2</sub>O<sub>5</sub>/GO as a layered crystal structure has been demonstrated to fabricate nanofibers with diameters within a range of ~300nm through electrospinning technique. The porous, hollow, and interconnected nanostructures were produced by electrospinning formed by polymers such as Polyvinylpyrrolidone (PVP) and Polyvinyl alcohol (PVA), separately, as solvent polymers with electrospinning technique. </p> <p> </p> <p>In this study, we investigated the synthesis of a graphene-modified nanostructured V<sub>2</sub>O<sub>5</sub> through modified sol-gel method and electrospinning of V<sub>2</sub>O<sub>5</sub>/GO hybrid. Electrochemical characterization was performed by utilizing Arbin Battery cycler, Field Emission Scanning Electron Microscopy (FESEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TGA), Mercury Porosimetery, and BET surface area measurement. </p> <p> </p> <p>As compared to the other conventional fabrication methods, our optimized sol-gel method, followed by the electrospinning of the cathode material achieved a high initial capacity of <b>342 mAh/g</b> at a high current density of 0.5C (171 mA/g) and the capacity retention of ~80% after 20 cycles. Also, the prepared sol-gel method outperforms the pure V<sub>2</sub>O<sub>5 </sub>cathode material, by obtaining the capacity almost two times higher.</p> <p>The results of this study showed that post-synthesis treatment of cathode material plays a prominent role in electrochemical performance of the nanostructured vanadium oxides. By controlling the annealing and drying steps, and time, a small amount of pyrolysis carbon can be retained, which improves the conductivity of the V<sub>2</sub>O<sub>5</sub> nanorods. Also, controlled post-synthesis helped us to prevent aggregation of electro-spun twisted nanostructured fibers which deteriorates the lithium diffusion process during charge/discharge of batteries.</p>
174

The Effect of Nano Silica on Porosity and Strength

Alshammari, Saleh Majed January 2018 (has links)
No description available.
175

Syntheses of novel antitumor 1,4-anthracenediones and functionized cyclododeciptycene based molecular gears

Lou, Kaiyan January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Duy H. Hua / The description of this thesis is divided into three chapters following the chronological events of my research development. In chapter one, a series of new 1,4-anthracenediones were synthesized via functionalizations of the methyl side chain of 6-methyl-1,4-anthracenedione. The new 1,4-anthracenediones were found to exhibit potent cytotoxic activities against human L1210 leukemic and HL-60 cell lines. A key intermediate, 6-bromomethyl-1,4- anthracenedione (1.44), was first synthesized through a sequence of reactions including a double Friedel-Crafts reaction, reductive quinone formation, and selective benzylic bromination. The bromide (1.44) was further converted to other 1,4-anthracenediones via hydrolysis, subsequent oxidation, and reductive amination or nucleophilic substitution. Chapter two deals with a continuous research project aiming at macropolycyclic cyclodecitycene or [10]beltene derivative using Diels-Alder reaction as the key strategy for cyclization. A tetraene, (4aR,5R,7S,7aS,11aR,12R,14S,14aR)-5,7,12,14-tetrahydroxy- 2,3,9,10-tetramethylene-1,4,4a,5,6,7,7a,8,11,11a,12,13,14,14a-tetradecahydro-6,13-obenzenopentacene (2.51), was synthesized by following previous work from this laboratory. Unfortunately, the Diels-Alder reaction of tetraene 2.51 with triptycene bisquinone showed predominantly polymerization over intramolecular cyclization. The use of double activated quinone such as 1,4,5,8-naphthodiquinone (2.64) and 1,2,4,5- tetraethoxycarbonyl-1,4-benzoquinone (2.70) as dienophiles gave monoadducts 2.67 and 2.71 respectively. However, they both failed to cyclize under high dilution conditions at elevated temperature, which may be rationalized by chair conformations adopted in six membered rings causing unfavorable twist for intramolecular cylization. Further study showed tetraene 2.51 underwent an unexpected furan ring forming reaction. In chapter three, an unprecedented substituted cyclododeciptycene, 2,4,6,8,10,12,14,16,18,20,22,24-dodecahydro-9,11,21,23-tetramethoxy-(2,14:4,16:6,18:8, 20:10,22:12,24)-hexa(o-benzeno)-[12]cyclacene-1,3,5,7,13,14,17,19-octaone (3.138), was successfully synthesized based on a successful intramolecular Diels-Alder reaction, which was developed from the above [10]beltene project and previously reported literature work. A series of all cis-iptycenequinones were synthesized as bisdienophile building blocks from a sequence of Diels-Alder reactions, separation of individual Diels- Alder adducts, enolization, and oxidative demethoxylation. It was found that each Diels- Alder adduct isomer shows distinguish [superscript]1HNMR signals inherent to its structure. The characteristic [superscript]1HNMR signals allow the identification of the structures of iptycenequinones derived from the above reactions. A bisdimethoxyanthracene, 6,8,15,17-tetramethoxy-7,16-dihydro-7,16-(o-benzeno)heptacene (3.56), was synthesized as bisdiene building block, which reacted with cis,cis-heptiptycene tetraquinone (3.23). The cycloadduct was transformed to cyclododeciptycene 3.138, whose structure was firmly established by a single-crystal X-ray analysis.
176

Estimated environmental risks of engineered nanomaterials in Gauteng.

Nota, Nomakhwezi Kumbuzile Constance 28 February 2011 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2011. / Please refer to full text for abstracts
177

Responsive theranostic nanoparticles

Huang, Wen-Yen January 2013 (has links)
The development and use of nanotechnology towards theranostics (all-in-one disease diagnostics and therapeutic delivery) have been increasing in popularity in recent years, in particular the use of high capacity of nanomaterials to transport both imaging and therapeutic agents into pathological tissues or abnormal cells. In this work, biocompatible mesoporous silica nanoparticles (MSNs) that can be reliably endocytosed by cells are employed in the investigation of novel cancer treatment and magnetic resonance imaging (MRI). One of the principal aims is to develop T<sub>1</sub> contrast nanoparticles not only with extraordinarily high MRI contrast characteristics, but also tunability through surface chemistry and functional protein conjugation. In coupling paramagnetic Gd<sup>3+</sup>-centres to MSNs, one can effectively marry the advantages afforded by increased molecular bulk with those engendered by confined water environment inside the porous network. Specifically, through exclusively biasing paramagnetic Gd<sup>3+</sup>-centres in the internal spaces of nanoparticles, their mobility and interaction with water protons can be altered, significantly, with beneficial changes in molecular tumbling (τ<sub>R</sub>), proton exchange (τ<sub>M</sub>) and water diffusion (τ<sub>D</sub>) within relaxation dynamics. These MRI nanoparticles with internalised Gd<sup>3+</sup>-centres are additionally used in the development of tunable/responsive contrast agents through vectoring protein conjugation. The relaxivity of MSNs can be tailored depending on the separation distances between proteins and nanoparticles; significantly, the simultaneous retention of both high MRI contrast and protein vectoring is achieved by the insertion of long polyethylene glycol (PEG) chain. The image contrast can also be reversibly gated through the competitive displacement of surface proteins by their partner proteins. Specifically, these responsive nanoparticles possess a low contrast resulting from restricted water accessibility when protein moieties are conjugated on the particles, whereas the removal of proteins causes a transition of contrast from a low to high state. The MSNs synthesised in this work are used not only in diagnostic imaging but also in the delivery of therapeutic agents for cancer therapy. The agents can be either physically encapsulated inside the pores or chemically conjugated on the nanoparticles. For the former, their loading and release efficiencies are tunable by the electrostatic interactions with particle surface functional groups; while in the latter case, their retention on nanoparticles, as opposed to being released, plays an important role in the effectiveness of cancer treatment that is achieved by trigging programmed cell death (apoptosis) in this work. This nanoparticle conjugation secures the proteins’ activity by facilitating their bypass of proteolytic degradation. Significantly, specially designed nanoparticles that demonstrate endo/lysosomal escape capability can reliably deliver therapeutic cytochrome c to cell cytosols for the initiation of a caspase cascade within apoptosis with high efficacy.
178

Development of an aerosol-CVD technique for the production of CNTs with integrated online control

Meysami, Seyyed Shayan January 2013 (has links)
This dissertation summarises the study of different aspects of the aerosol-assisted chemical vapour deposition (AACVD) technique for the production of multi-wall carbon nanotubes (MWCNTs). Upscaling the synthesis while retaining the quality of MWCNTs has been a prime objective throughout the work. A key aspect of this work was the study of different growth parameters and their influence on the homogeneity of the products across the reactor. The effect of the precursor composition on the yield and quality of MWCNTs were also investigated. It was shown that the synthesis rate can be significantly (60 – 80 %) increased by tuning the composition of the precursor. Moreover, by optimising the synthesis recipe and using a larger reactor, the synthesis rate and efficiency of the precursor were increased fivefold (up to 14 g/hr) and twice (up to 88 %) respectively. Large area (up to 90 cm<sup>2</sup>), mm-thick carpets of MWCNTs which were both free-standing and on substrate were produced. The carpets could withstand normal handlings without tearing apart, making them suitable for macroscopic characterisations and applications. By in-situ qualitative and quantitative gas analysis of the atmosphere of the reactor, the thermocatalytic cracking behaviour of 25 precursors was investigated and a mechanism for successive formation of different hydrocarbon fragments inside the reactor was proposed. A number of dedicated gas analysis methods and apparatuses such as a probe for zone-by-zone gas analysis of reactor and a heated chamber for preparation of standard gas analysis samples were developed to explore some of the least investigated aspects of the thermocatalytic cracking of precursors. Mapping the reactor revealed that some single-wall and double-wall carbon nanotubes (SWCNTs and DWCNTs) were also produced near the exhaust of the reactor. The SWCNTs were partly covered by fullerene-like species and resembled different forms of carbon nanobuds. In addition, the effect of the electron beam on the interaction of the SWCNTs and the fullerene-like species was studied in situ using high-resolution transmission electron microscopy (HRTEM).
179

Hybrid Optical Systems: From Nanometer to Multi-Meter Scales

Miles, Alexander Ashton January 2015 (has links)
Hybridizing, in general, is the approach of combining multiple technologies, materials, or designs such to mitigate the drawbacks and enhance the benefits. The result of this combination can be referred to as a hybrid. The projects described in this work concern a number of these hybrids. The collection of projects are limited to optical applications, but are otherwise enormously different. There is perhaps no better way to illustrate this breadth than their characteristic length-scale. That is, the general size of the elements being hybridized. Ten orders of magnitude lie between the smallest system described and largest systems. At the several-nanometer scale, a single component of a composite optical material. Diamond possesses a unique combination of refractive and dispersive optical properties, making it an attractive optical material. Unfortunately, the lowest cost diamond available possesses large amounts of impurities and color. In an attempt to remove the visible color from commercially available detonation-origin nanodiamond powders we developed a facile three-step cleaning process. This process and the resulting qualities of the nanodiamond are discussed. At tens to hundreds of nanometers scale, we have worked to optimize a complete composite material system; a combination of Polystyrene-b-poly (2-vinyl pyridine) (PS-b-P2VP), a block co-polymer with self-assembly properties, and controlled size iron platinum (FePt) nanoparticles. The applications in mind are magnetic field sensors, used in medical testing and physical experiments, and fiber optic isolators, used extensively in telecommunications networks. These composites exhibited commercially significant Verdet constants in room temperature Faraday rotation measurements, and possess processing benefits over the current state-of-the-art magneto-optically active materials. Several behaviors with respect to wavelength, particle loading, and primary particle size are discussed. At the micron to centimeter scale, we have designed and characterized a high-speed fiber-optic switch for telecommunications networks capable of reconfiguring 100 times faster than currently available technologies with comparable port counts. The switch is an unconventional hybrid of the micron-scale optics of single-mode fiber modes, and the centimeter scale of free-space holography. Built primarily using off-the-shelf components and a commercially available digital micro-mirror device (DMD), the switch is protocol and bit-rate agnostic, robust against random mirror failure, and provides the basic building block for a fully reconfigurable optical add drop multiplexer (ROADM).Finally, at the scale of several meters, we address a system that hybridizes two established methods for harvesting solar energy. Sunlight can be captured as electricity using photovoltaics (PV), as well as heat, often called concentrated solar power (CSP). Each approach has benefits and drawbacks which will be discussed. A system possessing the peak efficiency of PV, with the deployable storage of CSP, would most effectively meet demand around the clock. In order to combine these technologies, we have developed an approach for designing a dichroic coating to optimize performance of such a system utilizing multi-junction photovoltaic cells while diverting unused light to heat collection. Through careful design substantial improvement to system efficiencies are shown to be possible.
180

Φασματοσκοπικός έλεγχος αποδέσμευσης (νανο)ϋλικών ενσωματωμένων σε βιοπολυμερή

Ανδρικάκη, Σόνια 04 February 2014 (has links)
Η παρούσα διατριβή εξειδίκευσης αποτελεί το προοίμιο μιας μακρόπνοης εμπλοκής του εργαστηρίου υλοποίησής της στη μελέτη ενδεχόμενης μετανάστευσης ουσιών που χρησιμοποιούνται ως ενισχυτικά φραγής ή/και ως χημικοί αισθητήρες σε βιοπολυμερικές συσκευασίες τροφίμων και αποδέσμευσής τους σε προσομοιωτές τροφίμων. Στο πλαίσιο αυτό, η εργασία αυτή αποτελεί μια προσπάθεια ανάδειξης της μεθόδου επιφανειακής ενίσχυσης της σκέδασης Raman (Surafce Enhanced Raman Scattering) ως κατάλληλης για τον ποσοτικό προσδιορισμό μικρού μοριακού βάρους ενώσεων που ενδεχομένως αποδεσμεύονται σε υδατικά διαλύματα ή/και συγκεκριμένους προσομοιωτές τροφίμων. Η μελέτη εστιάστηκε στην ελεγχόμενη αποδέσμευση φαρμακευτικών ουσιών από μια βιοπολυμερική μήτρα κυρίως κατά το πρώιμο στάδιο της μελέτης και τις παραμέτρους που επηρεάζουν το φαινόμενο αυτό. Βασικός στόχος της μελέτης ήταν η κατά το δυνατό μείωση του ορίου ανίχνευσης με SERS της αποδεσμευόμενης ουσίας με την εμβάπτιση της βιοπολυμερικής μήτρας που την εμπεριέχει σε πρότυπα υδατικά διαλύματα. Πραγματοποιήθηκε μια διεξοδική μελέτη των υποστρωμάτων που χρησιμοποιούνται στο SERS και συγκεκριμένα του νανοκολλοειδούς αργύρου (Ag). Για τον σκοπό αυτό, πραγματοποιήθηκαν πειράματα τα οποία έδειξαν την εξάρτηση της έντασης SERS από τη συσσωμάτωση των υποστρωμάτων Ag συναρτήσει του χρόνου και του παράγοντα συσσωμάτωσης, NaCl. Η εφαρμογή του SERS σε μελέτες ουσιών εξαιρετικά χαμηλών συγκεντρώσεων αναδεικνύεται ως ένα πολύ ενδιαφέρον πεδίο έρευνας. Επίσης, ως πρότυπο πείραμα, παρουσιάζεται μεθοδολογία μελέτης με την τεχνική SERS της αποδέσμευσης του αντικαρκινικού φαρμάκου Μitoxantrone (ΜΤΧ) από εμπορικά ράμματα Maxon. Για το σκοπό αυτό, παρασκευάστηκαν πολυμερικά υμένια με εγκλωβισμένη τη δραστική ουσία και η μελέτη της αποδέσμευσης της σε νερό και PBS (phosphate buffered saline) πραγματοποιήθηκε με SERS και UV-Vis, αντίστοιχα. Η φασματοσκοπία UV-Vis χρησιμοποιήθηκε συμπληρωματικά. Στηριζόμενοι στη μεθοδολογία που αναπτύξαμε εξάγαμε ποσοτικά αποτελέσματα από τρία διαφορετικά εργαστηριακά δείγματα, τα οποία προήλθαν από ανάμιξη εμπορικών ραμμάτων Maxon με 1% κ.β. MTX: (α) στην άμορφη φάση έπειτα από ταχεία ψύξη του τήγματος, (β) στην ημικρυσταλλική φάση με σχετικά χαμηλό ποσοστό κρυσταλλικότητας, που λάβαμε έπειτα από ανόπτηση της άμορφης φάσης για περιορισμένο χρόνο στη θερμοκρασία κρυστάλλωσης και (γ) σε μια επίσης ημικρυσταλλική φάση με αρκετά μεγάλο ποσοστό κρυστάλλωσης (όσης και τα εμπορικά ράμματα). Τα αποτελέσματα δείχνουν πως υπάρχει συσχέτιση μεταξύ κρυσταλλικότητας και αποδέσμευσης του φαρμάκου, με τα μικρότερα ποσά αποδέσμευσης στην περίπτωση του άμορφου δείγματος. Αυτό που παρατηρήθηκε στα πρώιμα στάδια της αποδέσμευσης από τις μετρήσεις SERS φαίνεται να επαληθεύεται από αντίστοιχα αποτελέσματα σε μεταγενέστερα στάδια αποδέσμευσης που λάβαμε με εφαρμογή της συμβατικής τεχνικής απορρόφησης ορατού – υπεριώδους (UV-Vis). Ωστόσο, οι ποσοτικές μετρήσεις με τη χρήση του SERS σε πολύ μικρές συγκεντρώσεις έδειξαν μεγαλύτερη ανιχνευτική ευαισθησία σε σχέση με αυτές που πραγματοποιήθηκαν με την απορρόφηση UV-Vis. Συμπερασματικά, το SERS δείχνει ικανό στον ποσοτικό προσδιορισμό ενεργών ουσιών που αποδεσμεύονται από βιοσυμβατά πολυμερικά συστήματα μεταφοράς δραστικών ουσιών σε πολύ μικρές συγκεντρώσεις. / This thesis of specialization is the precursor of a long-term involvement of the laboratory of Applied Molecular Spectroscopy of FORTH/ICE-HT in the implementation of the study of the migration of substances used as barrier and/or as chemical sensors in biopolymer based food packaging and their release into food simulants. In this context, this work attempts to highlight the method of surface enhanced Raman scattering (SERS) as appropriate for quantifying low molecular weight compounds that may be released in aqueous solutions and/or specific food simulants. The study focused on the controlled release of pharmaceuticals from a biopolymeric matrix mainly during the early stage of the study and the parameters affecting this phenomenon. The main objective of the study was to reduce SERS detection limit of the released substance by emerging the substance-incorporated biopolymeric matrix in standard aqueous solutions. In this context, we developed methods to maximize SERS enhancement and consequently reduce the limit of detection of an active substance, Mitoxantrone (MTX). This was achieved by a thorough study of the substrates used in SERS, namely nanocolloidal silver (Ag) suspensions. For this purpose, we contacted experiments which show the dependence of the SERS intensity on the aggregation of Ag substrates as a function of both time and the aggregating agent, NaCl. Also, as a standard experiment, present SERS methodology was applied in the study of the release of the anticancer drug Mitoxantrone (MTX) from commercially available sutures, Maxon. For this purpose, polymeric films prepared with the encapsulated active substance were immersed either in water or/and in PBS (phosphate buffered saline) and the release of MTX was probed by both SERS and UV-Vis. Based on the developed methodology we obtained quantitative results from three different laboratory samples produced by mixing commercial Maxon sutures with 1 wt% MTX: (a) an almost completely amorphous mixture produced by quenching from the melt, (b) a semi-crystalline one possessing low crystallinity that was produced by annealing the amorphous sample at the temperature close to the crystallization one and (c) a semi-crystalline one possessing high crystallinity similar to the commercial product. The results indicate a correlation between crystallinity and drug release rate; the more amorphous the sample is the less quantity of the drug is released. SERS was able to probe the active agent at the early state of release; UV-Vis has supported these results at a later state of the release process. In conclusion, SERS may enable low concentration quantitative assessment of controlled release of drugs from biopolymer-based delivery systems.

Page generated in 0.0518 seconds