• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 10
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 64
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Diamond nanostructure fabrication by etching and growth with metallic nanoparticles / Diamant nanostructures fabrication par gravure et de croissance avec des nanoparticules métalliques

Mehedi, Hasan-Al 18 December 2012 (has links)
Le diamant est un matériau fascinant avec d'exceptionnelles propriétés physiques. Son application à divers domaines reste limitée parce que sa fabrication est difficile et nécessite des substrats et conditions spécifiques. En outre, les dispositifs de diamant tels que les capteurs nécessitent généralement la structuration et l'échelle micro ou nanométrique, et l'inertie chimique du diamant rend ce processus technologique plus difficile que celui des semiconducteurs réguliers. Il s'agit d'un besoin évident de la recherche fondamentale d’explorer de nouvelles façons de fabriquer des nanostructures de diamant, ce qui permet de nouvelles formes de capteurs et dispositifs. Dans ce contexte, le travail présenté est d'une grande importance pour la communauté de diamant et pour le développement futur de la technologie du diamant.Le manuscrit est divisé en huit parties: une introduction; 6 chapitres, une conclusion générale. Dans l'introduction le contexte de l'étude est brièvement présenté avec les deux objectifs. Le premier consistait à étudier la croissance des nanofils de diamant et à trouver des conditions appropriées pour obtenir des nanofils de façon reproductible. Le deuxième objectif était la mise au point du procédé de gravure du diamant avec des particules de catalyseur et de l'optimisation des paramètres du procédé.Le premier chapitre de ce manuscrit présente tout d'abord l'état de l’art en mat ière de propriétés et des technologies de croissance du diamant. Puis, dans le deuxième chapitre, en vue de la croissance des nanofils et des études de gravure de nanostructures utilisées catalyseurs métalliques, la base de l'interaction métal-carbone est présenté.Le chapitre trois contient l'instrumentation et principe de fonctionnement des techniques expérimentales et analytiques utilisées dans cette étude. Le chapitre suivant se concentre sur la recherche de conditions favorables à la croissance des nanofils de diamant, d'abord en étudiant en détail un processus signalé en 2005 qui a conduit à la nucléation des nanocristaux sur des nanotubes de carbone, puis la croissance de nanofils.Les conditions de croissance ont été soigneusement reproduites, sans succès reproductible. Il en est déduit déduit que d'un élément non a contribué à la croissance, comme une contamination du catalyseur. La combinaison avec le fait que le processus publiée en 2005 n'a jamais été reproduite, en dépit de son importance technologique élevé, ce qui suggère que la contamination s'est produite également dans cette oeuvre originale.Puis, à partir de cette première observation, l'effet d'un catalyseur a été étudié, et des résultats intéressants ont été obtenus. Les nanofils ont été obtenus de façon reproductible, mais le point important est que les nanofils à base de silicium sont très faciles à cultiver, et qu'un environnement deCarbone pur était nécessaire d'étudier la croissance de nanofils de carbone. Dans ces conditions, un continuum allant de diamant de gravure pour la croissance du diamant a été obtenue en fonction de l'apport de carbone, très intéressant pour la technologie du diamant. Dans le cinquième chapitre du mécanisme de gravure de diamant par des particules de catalyseur est explorée. La gravure à motifs a été proposée pour la fabrication de nano-ou micro-structures dans le diamant, et il est présenté dans la dernière partie de ce chapitre. Le chapitre 6 présente deux applications intéressantes du processus dedéveloppement. Les premières membranes poreuses préoccupations utilisés comme bio-capteurs, et les nanotubes de carbone second concerne la base neuro-capteurs.Malgré l'étude infructueuse de la croissance du diamant nanofil, le travail fait des progrès significatifs à la science de la croissance matérielle nanocarbone. Et elle a conduit à l'étude approfondie de gravure diamant, qui est également très important pour la technologie. / One-dimensional structures with nanometre diameters, such as nanotubes and nanowires, have attracted extensive interest in recent years and form new family of materials that have characteristic of low weight with sometimes exceptional mechanical, electrical and thermal properties. Without any change in chemical composition, fundamental properties of bulk materials can be enhanced at the nanometre scale leading to extraordinary nanodevices.Since a few years, nanowires of different semiconducting materials have been grown. To mention few of these, Si, GaN, SnO, SiC and ZnO nanowires were all successfully demonstrated. However, the growth of diamond nanowires has not yet been demonstrated, despite the strong interest for this material. Bulk diamond combines various exceptional properties for a wide range of applications: Chemical inertness, radiation hardness, biocompatibility, high hole/electron mobility (2000/1000 cm2/V/s), high thermal conductivity (22 W/cm/K), wide bandgap (5.5 eV), and wide electric potential window (3.25 eV H-O evolutions).Since about 30 years, the growth of diamond thin film is well controlled either as insulator or as semiconductor with p- and n- type dopants. Fabrication of 25x25 mm2 monocrystalline diamond wafer has already been reported, and two inches wafers are expected in a couple of years demonstrating the growing interest for this material. Among present or short-term applications one can mention alpha-particle detectors, solar-blind UV sensors, high voltage electronic devices, bio-sensors and single photon source. The realization of nanowires should improve the performance of some of these devices and also open a range of new high performance applications.The stability of 0D (nanocrystals) and 1D (nanowires) diamond nanostructures has been extensively studied using ab initio modelling and indicates that for specific crystallographic orientations clusters of nanometric size are thermodynamically stable. One experimental indication for diamond nanowire growth has been published by Sun et al. in 2005, based on nanocrystal nucleation and growth on carbon nanotubes followed by 1D growth. This particular nucleation process on carbon nanotube has furthermore been explained theoretically in 2009.Based on these experimental and theoretical results, the first objective of this thesis was to explore the growth of diamond nanowire and find suitable conditions to obtain nanowires in a reproducible way. A wide range of process conditions were explored, first without any catalyst, then with metallic catalyst in order to promote Vapour-Liquid-Solid (VLS) growth. Although a comprehensive knowledge regarding carbon nanotube stability in hydrogen atmosphere and diamond-catalyst interaction has been obtained and some carbon nanostuctures were grown, no diamond nanowires were obtained in a reproducible way.However, the careful study of the diamond-catalyst interaction revealed a very interesting etching process that could be very useful for the fabrication of diamond nanostructures. A second objective was then defined: development of the etching process for diamond using transition metal as catalyst and optimization of the process parameters for specific applications such as the fabrication of porous diamond membranes for bio-sensors.
62

Propriedades estruturais e eletrônicas do ZnO nanoporoso sob deformação biaxial

Tórrez Baptista, Alvaro David January 2018 (has links)
Orientador: Prof. Dr. Jeverson Teodoro Arantes Junior / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, Santo André, 2018. / Investigamos, sistematicamente, as propriedades estruturais e eletrônicas do óxido de zinco nanoporoso sob tração e compressão biaxial utilizando cálculos de primeiros princípios baseados na Teoria do Funcional da Densidade. O sistema apresenta uma alta concentração de nanoporos lineares orientados nas direções cristalográcas [0001] e [01-10], bem como um lme no nanoporoso. Para compressões maiores do que 4% com relação ao parâmetro de rede, foi observada uma distorção estrutural nas regiões menos densas do material poroso, mostrando uma tendência à mudança de fase localizada. O coe- ciente de Poisson calculado dos nanoporos orientados na direção [0001] foi negativo. Isto signica que quando o material poroso foi tracionado, expandiu-se transversalmente. Já quando comprimido, o material contraiuse na direção transversal. Os materiais que possuem esta característica são conhecidos como materiais auxéticos. Nossos resultados mostram que o valor do gap de energia foi modulado pelas deformações biaxiais com uma tendência oposta ao bulk. A densidade dos estados eletrônicos conrmou nossas observações. A tendência estrutural inversa da superfície dos nanoporos é o principal mecanismo para o comportamento inverso do gap sob compressão e tração. Dentro do nosso conhecimento, este é o primeiro reporte de um comportamento inverso do gap de energia de estruturas de ZnO sob compressão e tração biaxial. Nossos resultados sugerem que a nanoporosidade, conjuntamente com tra- ção e compressão biaxial, podem ser empregadas como um método dentro da engenharia de gap para customizar materiais funcionais que requerem controle da atividade eletrônica. / This work investigated, systematically, the structural and electronic properties of nanoporous zinc oxide, under biaxial strain, through rst-principles methods, based on total energy ab initio calculations using Density Functional Theory. The system was in a massive nanopore concentration regime. We studied linear pores in [0001] and [01-10] direction and a porous thin lm. Using a biaxial tension above 4% of the ZnO bulk lattice parameter, we observed a distortion resulting in a local phase change region in the material's structure. The calculated Poisson's coecient was negative for the [0001] pore. When stretched, they become thicker in the perpendicular direction to the applied force. These materials are known as auxetic. Our results show that the energy band gap value is tuned by the strain with an uncommon opposite trend related to the bulk. The density of electronic states conrmed the energy gap modulation. The structural inverse trend of nanopores surface is the principal mechanism for gap inverse behavior under compressive and tensile strain. From the best of our knowledge, this is the rst report about opposite Egap trend in strained nanopores. Our results suggest that nanoporosity and biaxial strain could be employed as a method within the band gap engineering for tailored functional matexi rials that require control of the electronic activity.
63

Active Tuning of Thermal Conductivity in Single layer Graphene Phononic crystals using Engineered Pore Geometry and Strain

Radhakrishna Korlam (11820830) 19 December 2021 (has links)
Understanding thermal transport across length scales lays the foundation to developing high-performance electronic devices. Although many experiments and models of the past few decades have explored the physics of heat transfer at nanoscale, there are still open questions regarding the impact of periodic nanostructuring and coherent phonon effects, as well as the interaction of strain and thermal transport. Thermomechanical effects, as well as strains applied in flexible electronic devices, impact the thermal transport. In the simplest kinetic theory models, thermal conductivity is proportional to the phonon group velocity, heat capacity, and scattering times. Periodic porous nanostructures impact the phonon dispersion relationship (group velocity) and the boundaries of the pores increase the scattering times. Strain, on the other hand, affects the crystal structure of the lattice and slightly increases the thermal conductivity of the material under compression. Intriguingly, applying strain combined with the periodic porous structures is expected to influence both the dispersion relation and scattering rates and yield the ability to tune thermal transport actively. But often these interrelated effects are simplified in models.<br><br>This work evaluates the combination of structure and strain on thermal conductivity by revisiting some of the essential methods used to predict thermal transport for a single layer of graphene with a periodic porous lattice structure with and without applied strain. First, we use the highest fidelity method of Non-Equilibrium Molecular Dynamics (NEMD) simulations to estimate the thermal conductivity which considers the impact of the lattice structure, strain state, and phononic band structure together. Next, the impact of the geometry of the slots within the lattice is interrogated with Boltzmann Transport Equation (BTE) models under a Relaxation Time Approximation. A Monte Carlo based Boltzmann Transport Equation (BTE) solver is also used to estimate the thermal conductivity of phononic crystals with varying pore geometry. Dispersion relations calculated from continuum mechanics are used as input here. This method which utilizes a simplified pore geometry only partially accounts for the effects of scattering on the pore boundaries. Finally, a continuum level model is also used to predict the thermal conductivity and its variations under applied strain. As acoustic phonon branches tend to carry the most heat within the lattice, these continuum models and other simple kinetic theories only consider their group velocities to estimate their impact on phonon thermal conductivity. As such, they do not take into account the details of phonon transport across all wavelengths.<br><br>By comparing the results from these different methods, each of which has different assumptions and simplifications, the current work aims to understand the effects of changes to the dispersion relationship based on strain and the periodic nanostructures on the thermal conductivity. We evaluate the accuracy of the kinetic theory, ray tracing, and BTE models in comparison to the MD results to offer a perspective of the reliability of each method of thermal conductivity estimation. In addition, the effect of strain on each phononic crystal with different pore geometry is also predicted in terms of change to their in-plane thermal anisotropy values. To summarize, this deeper understanding of the nanoscale thermal transport and the interrelated effects of geometry, strain, and phonon band structure on thermal conductivity can aid in developing lattices specifically designed to achieve the required dynamic thermal response for future nano-scale thermoelectric applications.
64

Classification de transcrits d’ARN à partir de données brutes générées par le séquençage par nanopores

Atanasova, Kristina 12 1900 (has links)
Le rythme impressionnant auquel les technologies de séquençage progressent est alimenté par leur promesse de révolutionner les soins de santé et la recherche biomédicale. Le séquençage par nanopores est devenu une technologie attrayante pour résoudre des lacunes des technologies précédentes, mais aussi pour élargir nos connaissances sur le transcriptome en générant des lectures longues qui simplifient l’assemblage et la détection de grandes variations structurelles. Au cours du processus de séquençage, les nanopores mesurent les signaux de courant électrique représentant les bases (A, C, G, T) qui se déplacent à travers chaque nanopore. Tous les nanopores produisent simultanément des signaux qui peuvent être analysés en temps réel et traduits en bases par le processus d’appel de bases. Malgré la réduction du coût de séquençage et la portabilité des séquenceurs, le taux d’erreur de l’appel de base entrave leur mise en oeuvre dans la recherche biomédicale. Le but de ce mémoire est de classifier des séquences d’ARNm individuelles en différents groupes d’isoformes via l’élucidation de motifs communs dans leur signal brut. Nous proposons d’utiliser l’algorithme de déformation temporelle dynamique (DTW) pour l’alignement de séquences combiné à la technologie nanopore afin de contourner directement le processus d’appel de base. Nous avons exploré de nouvelles stratégies pour démontrer l’impact de différents segments du signal sur la classification des signaux. Nous avons effectué des analyses comparatives pour suggérer des paramètres qui augmentent la performance de classification et orientent les analyses futures sur les données brutes du séquençage par nanopores. / The impressive rate at which sequencing technologies are progressing is fueled by their promise to revolutionize healthcare and biomedical research. Nanopore sequencing has become an attractive technology to address shortcomings of previous technologies, but also to expand our knowledge of the transcriptome by generating long reads that simplify assembly and detection of large structural variations. During the sequencing process, the nanopores measure electrical current signals representing the bases (A, C, G, T) moving through each nanopore. All nanopores simultaneously produce signals that can be analyzed in real time and translated into bases by the base calling process. Despite the reduction in sequencing cost and the portability of sequencers, the base call error rate hampers their implementation in biomedical research. The aim of this project is to classify individual mRNA sequences into different groups of isoforms through the elucidation of common motifs in their raw signal. We propose to use the dynamic time warping (DTW) algorithm for sequence alignment combined with nanopore technology to directly bypass the basic calling process. We explored new strategies to demonstrate the impact of different signal segments on signal classification. We performed comparative analyzes to suggest parameters that increase classification performance and guide future analyzes on raw nanopore sequencing data.

Page generated in 0.0307 seconds