• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 10
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 64
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Electrochemical Characterizations and Theoretical Simulations of Transport Behaviors at Nanoscale Geometries and Interfaces

Liu, Juan 12 November 2012 (has links)
Since single nanopores were firstly proposed as a potential rapid and low-cost tool for DNA sequencing in 1990s (PNAS, 1996, 93, 13770), extensive studies on both biological and synthetic nanopores and nanochannels have been reported. Nanochannel based stochastic sensing at single molecular level has been widely reported through the detection of transient ionic current changes induced by geometry blockage due to analytes translocation. Novel properties, including ion current rectification (ICR), memristive and memcapacitive behaviors were reported. These fundamental properties of nanochannels arise from the nanoscale dimensions and enables applications not only in single molecule sensing, but also in drug delivery, electrochemical energy conversion, concentration enrichment and separation, nanoprecipitation, nanoelectronics etc. Electrostatic interactions at nanometer-scale between the fixed surface charges and mobile charges in solution play major roles in those applications due to high surface to volume ratio. However, the knowledge of surface charge density (SCD) at nanometer scale is inaccessible within nanoconfinement and often extrapolated from bulk planar values. The determination of SCD at nanometer scale is urgently needed for the interpretation of aforementioned phenomena. This dissertation mainly focuses on the determination of SCD confined at a nanoscale device with known geometry via combined electroanalytical measurements and theoretical simulation. The measured currents through charged nanodevices are different for potentials with the same amplitude but opposite polarities, which deviates away from linear Ohm's behavior, known as ICR. Through theoretical simulation of experiments by solving Poisson and Nernst-Planck equations, the SCD within nanoconfinement is directly quantified for the first time. An exponential gradient SCD is introduced on the interior surface of a conical nanopre based on the gradient distribution of applied electric field. The physical origin is proposed based on the facilitated deprotonation of surface functional groups by the applied electric field. The two parameters that describe the non-uniform SCD distribution: maximum SCD and distribution length are determined by fitting high- and low-conductivity current respectively. The model is validated and applied successfully for quantification and prediction of mass transport behavior in different electrolyte solutions. Furthermore, because the surface charge distribution, the transport behaviors are intrinsicaly heterogeneous at nanometer scale, the concept is extended to noninvasively determine the surface modification efficacy of individual nanopore devices. Preliminary results of single molecule sensing based on streptavidin-iminobiotin are included. The pH dependent binding affinity of streptavidin-iminobiotin binding is confirmed by different current change signals ("steps" and "spikes") observed at different pHs. Qualitative concentration and potential dependence have been established. The chemically modified nanopores are demonstrated to be reusable through regenerating binding surface.
42

Diffusion Of Hydrocarbons In Zeolites And Ions In Water

Borah, Bhaskar J 08 1900 (has links) (PDF)
Diffusion is a fundamental process which occurs in a wide variety of phases. It plays an important role in chemistry, physics, biology, materials science etc. In recent times, diffusion in confined systems has been widely investigated. Porous aluminosilicates such as zeolites, carbon nano tubes and metal organic frameworks(MOF) provide confined regions within which small molecules can diffuse. Indeed, diffusion within these materials have attracted considerable attention in the past few decades (see for example, “Diffusion in Zeolites and Other Microporous Solids”, J. Ka¨rger and D..M. Ruthven, John Wiley &Sons, NewYork,1992). Diffusion in confined spaces exhibits rich variety. For example, single file diffusion, window effect, levitation effect (LE), super-and sub-diffusive motion have all been observed in confined regions. Levitation effect provides an explanation for the dependence of self-diffusivity on the diameter of the diffusant. Consider a diffusant diffusing within a porous material. The pore network provided by the pore material may be characterized by the void and the neck distribution where the necks are the narrower regions interconnecting larger voids. It has been seen that diffusivity is maximum when the size of the diffusant is large and when it is comparable to the diameter of the bottleneck of the pore network. Recently it has been demonstrated that the levitation effect also exists in dense liquids such as water and dense solids. These developments essentially unify our understanding of diffusion in widely differing condensed matter phases. These results show that there is fundamentally no difference between porous substances and dense media at least with regard to dependence of self-diffusivity on the diameter of the diffusant. Chapter 1 provides a brief introduction to the subject of hydrocarbons confined within zeolites and ionic conductivity in polar solvents. We have given a description of the different applications of zeolites in the area of catalysis, separation etc. Window effect, single file diffusion, levitation effect and enhancement of viscosity of confined fluids are described. A brief review of various computational studies of hydrocarbons confined within zeolites is given. This is followed by a discussion of different experimental techniques and their use in the study of diffusion and adsorption within zeolites by many different groups in the last few decades. In the last section of the chapter we have discussed the anomalous size dependence of ionic conductivity in polar solvents which presumably has its origin in the Levitation Effect(LE). We have explained different theories proposed previously to understand the non-monotonic behavior of ionic conductivity as a function of ionic radius. A molecular dynamics(MD) investigation and quasi-elastic neutron scattering (QENS) study of pentane isomers in zeolite NaY is pre-sented in Chapter 2. QENS provides the first direct experimental evidence for LE. In an earlier study, a maximum in diffusivity as a function of the diameter of the diffusant for monatomic sorbates confined within zeolite NaY was observed by MD simulation. Since LE has been invoked to explain the diffusion in a wide variety of condensed matter phases, an experimental evidence of the levitation effect would be of great value. QENS measurements were carried out by Dr. Herve Jobic. Surprisingly we found that neopentane shows higher diffusivity than n-pentane and isopentane although its cross-sectional diameter perpendicular to the long molecular axis is larger compared to isopentane and n-pentane in agreement with predictions of LE. There is an excellent agreement between QENS results and MD simulation. LE predicts that the isomer with high diffusivity has low activation energy. The activation energies have been calculated from the Arrhenius plots using QENS as well as MD data. These follow the order Ea(n−pentane)>Ea(isopentane)>Ea(neopentane). Various other properties such as potential energy barrier at the bottleneck, velocity auto correlation function, intermediate scattering function, k dependence of the width of the dynamic structure factor have been computed. These provide additional insights into the nature of the motion of these isomers. They suggest that the barrier at the 12-ring window depends on the molecular diameter and levitation parameter of isomer. In Chapter 3, we report molecular dynamics simulation study of n-hexane and 2,2-dimethylbutane(DMB) mixture confined within the pores of zeolite NaY. We have taken an equimolar composition of the mixture consisting of n-hexane and DMB. The total number of hydrocarbon molecules in the system is 128. The simulations were carried out at various temperatures of 170, 200, 250 and 300 K. We have computed the self-diffusivities from the slope of the mean square displacement. It is found that the diffusivity of DMB is 0.82 ×10−9 m2/sec and that of n-hexaneis0.38 ×10−9 m2/sec. All previous studies of linear hydrocarbon and its branched analogue in different zeolites in the literature suggest that it is the linear member which has higher self-diffusivity. The cross-sectional diameter of DMB perpendicular to the long molecular axis is higher than that of n-hexane. Thus, DMB should have lower diffusivity. In order to understand this behavior of diffusivity we have computed the activation energies from the Arrhenius plots. The activation energy of DMB is found to be lower than that of n-hexane. This is inconformity with the levitation effect which states that the molecule with larger diameter comparable to that of the bottleneck diameter has low activation energy. We have also computed the potential energyprofileatthe12-ring window. The potential energy profile shows a barrier for n-hexane and a minimum for DMB at the window. This is in agreement with the previous results on monatomic species. We have computed other properties such as velocity auto correlation function, intermediate scattering function as well as wave number dependence of full width at half maximum of dynamic structure factor. These properties explain in detail the motion of n-hexane and DMB within NaY zeolite. In Chapter 4 molecular dynamics investigation into diffusion of n-decane and 3-methylpentane mixture within zeolite NaY. We have studied an equimolar mixture of n-decane and 3-methylpentane (36 of each) in the supercages of NaY zeolite in such a way that the con-centration is one molecule for every three cages. Simulations were performed at four different temperatures : 300, 350, 400 and 450 K. The distribution and orientation of the molecules inside the cage and at the window plane have been studied. Inside the cage, 3-methylpentane stays more close to the inner surface of the zeolite whereas n-decane prefers to stay close to the center of the cage. Both the species prefer to stay with their long molecular axis parallel to the surface of the zeolite. During passage through the window, 3-methylpentane is closer to the window center than n-decane. The distribution of the angle subtended by the end-to-end vector of the molecule with the normal to the window plane, while the molecular center is in the window plane, shows that 3-methylpentane samples a larger range of orientation than n-decane. This may lead to an entropic barrierfor n-decane. We have computed the diffusivity of both the molecules. Diffusivity of 3-methylpentane is found to be higher than n-decane. This behavior is consistent with the observations made in the last two chapters. The activation energy of 3-methylpentane is found to be 3.17 kJ/mol and forn-decaneitis6.0kJ/mol. This agrees with the prediction of levitation effect. The energy profile a the window shows shallow minimum for both n-decane and 3-methylpentane. Therefore, the energy profile does not describe the nature of motion of the molecules. We have computed the the dihedral angle distribution when the molecule is at the adsorption site and when it is at the window plane. The distributions essentially remain same for 3-methylpentane whereas a considerable change in the distributions is seen for n-decane. The gauche population of n-decane increases at the cost of trans population when it goes from the adsorption site to the window. The lower diffusivity of n-decane can be partly attributed to the change in the dihedral angle. Also, the orientational entropic barrier may be another cause of the slow motion of n-decane. Thus, in the present study the slow motion of n-decane is partly explained by levitation effect and partly by the change in the dihedral angle as well as the entropic barrier. Overall, the results in the last three chapters leads to the main conclusion that the branched isomer will diffuse faster than a linear hydrocarbon in zeolites with 12-ring window such as zeolite NaY. In Chapter 5, diffusion of pentane isomers in zeolites NaX and NaY has been investigated using pulsed field gradient nuclear magnetic resonance(PFG-NMR) and molecular dynamics(MD) techniques respectively. Temperature as well as concentration dependence of diffusivity have been studied. The diffusivities obtained from NMR are roughly an order of magnitude smaller than those obtained from MD. The dependence of diffusivity on loading at high temperatures exhibits a type I behavior according to the classification of K¨arge rand Pfeifer. NMR diffusivities of the isomers exhibit the order D(n−pentane)>D(isopentane)>D(neopentane). The results from MD are in agreement with the QENS results where the diffusivities of the isomers follow the order D(n-pentane)<D(isopentane)<D(neopentane). The activation energies from NMR show Ea(n-pentane)<Ea(isopentane) <Ea(neopentane) whereas those from MD suggest the order Ea(n-pentane) >Ea(isopentane) >Ea(neopentane). The latter follows the predictions of levitation effect whereas those of NMR appears to be due to the presence of defects in the zeolite crystals. The differences between NMR and MD are attributed to the long time and length scales over which NMR samples are probed compared to MD or QENS. Th eresults from these studies suggests that although branched isomer intrinsically have higher diffusivities than linear hydrocarbons in zeolites such as NaY, the presence of defects can effectively annul this higher diffusivity of the branched isomer. Correlation of self-diffusivity and entropy of monatomic sorbates con-fined within zeolite NaY has been investigated in Chapter 6. We have carried out molecular dynamics simulation on monatomic sor-bates within zeolite NaY at 150, 110 and 90 K. As suggested by the Levitation Effect, the self-diffusivity shows a non-monotonic behavior as a function of the diameter of the sorbates. We have computed the entropy of the sorbates of various sizes ranging from 3.07˚ A to 7.0˚ A using the method proposed by Goddard and his co-workers as well as from the radial distribution function. The variation of entropy with the diffusant diameter exhibits a behavior similar to that of the self-diffusivity on diffusant diameter, thereby showing a strong correlation between the entropy and diffusivity. The loss of entropy on adsorption is a minimum for the diffusant with maximum diffu-sivity. This is in agreement with the experimental measurements of Kemball. Thus, entropy follows the prediction of the levitation effect. With decrease in temperature both self-diffusivity as well as entropy show more pronounced maximum as a function of the diameter of the sorbate. The dimensionless diffusivity from three different isotherms follow a Rosenfeld type of excess entropy scaling rule, D∗= Aexp(αSe) where A and α are the scaling coefficients. In Chapter 7 we have investigated the self-diffusivity as well as cor-rected diffusivity of pure methane in faujasite NaY combining quasi elastic neutron scattering experiment and molecular dynamics simu-lation. The QENS experiment carried out at 200 K led to an unex-pected dependence of self-diffusivity on loading for pure methane with the presence of a maximum at 32 CH4/unit cell. This is at variance with previous reports. Typically, diffusivity of a polar species such as methane in a zeolite such as NaY exhibits a monotonic decrease with loading. Molecular dynamics simulation was performed to reproduce this experimentally observed behavior. We could reproduce the diffusivity behavior qualitatively with a maximum at 16 CH4/unit cell. The corrected diffusivities obtained from both experiment as well simulation show similar behavior as the self-diffusivity with maximum at an intermediate loading. The experimental behavior was reproduced only when the interaction of methane with the sodium cation is in-creased suggesting that this interaction may be important. In Chapter8 we have investigated the role of attractive interaction on size dependent diffusivity maximum of ions in water. We have per-formed molecular dynamics simulation of mode lions in water. Earlier study of systems interacting only through van der Waals interaction shows that the size dependent diffusivity maximum or the levitation effect disappears when the attractive term(r−6 term) of the Lennard-Jones potential is put equal to zero. It is not clear whether the absence of the dispersion interaction in a system where there is electrostatic attraction will lead to a size dependent diffusivity maximum. There-fore, two sets of simulations with and without dispersion interaction between the ion and water have been carried out at700Kinorderto understand the influence of the attractive interaction. It is found that the self-diffusivity of the ions indeed exhibits an anomalous maximum as a function of the vanderWaals diameter for both the sets, viz., with dispersion and without dispersion interaction. In fact, the diffusivity maximum is seen to be more pronounced when there is no dispersion interaction. This existence of the maximum in self diffusivity when there is no dispersion interaction between the ion and the water is attributed to the attractive term from electrostatic interactions. De-tailed analysis shows that the solvent shell is more well defined in the presence of dispersion interactions. The velocity auto correlation function shows undulation at short times for the smaller ions indicating rattling motion inside the cage formed by the surrounding water molecules. Smaller ion exhibits a bi-exponential decay while a single exponential decay is seen for the ion with maximum diffusivity in the intermediate scattering function. The solvent structure appears to determine much of the dynamics of the ion. Interesting trends are seen in the activation energies and these can be understood in terms of the Levitation Effect.
43

Effects of Nanoscale Confinement on the Structure and Dynamics of Glass-forming Systems

Kipnusu, Wycliffe Kiprop 17 September 2015 (has links)
Structure and dynamics of nanoconfined glass-forming oligomers and diblock coplymers (BPCs) are investigated by a combination of infrared transition moment orientational analysis (IR-TMOA), positron annihilation lifetime spectroscopy (PALS), grazing incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and broadband dielectric spectroscopy (BDS). The oligomers probed are the van der Waals type, tris(2-ethyhexyl)phosphate (TEHP) and the self-associating molecules of 2-ethyl-1-hexanol (2E1H). Symmetric and asymmetric poly(styrene-b-1,4-isoprene) P(S-b-I) are studied for the case of BCPs. The samples are confined either in one-dimensional (1D) in form of thin films or in 2D (nanopores) geometrical constraints. The molecular order of TEHP in nanopores as studied by IR-TMOA shows that about 7% of the molecules are preferentially oriented perpendicular to the long axis of the pores due to their interaction with the pore walls. PALS results reveal that 2E1H confined in nanopores exhibit larger free volume with respect to the bulk. In thin films (1D), P(S-b-I) having volume fraction of isoprene blocks f(PI)= 0.55 exhibits randomly oriented lamellae and their thicknesses are directly proportional to the film thickness d(film). For f(PI) = 0.73, perpendicular cylinders with respect to the substrate are observed for d(film)>50 nm but they lie along the substrate plane when d(film) < 50 nm. In AAO pores (2D) with average pore diameter d(pore) of 150 nm, straight nanorods are formed which change to helical structures in 18 nm pores. Molecular dynamics of 2E1H and TEHP constrained in nanopores (2D), is influenced by the interplay between confinement and surface effects. Confinement effects show up as an increase in the structural relaxation rate with decreasing pore sizes at the vicinity of the glass transition temperature. This is attributed to the reduced packing density of the molecules in pores as quantified by PALS results for 2E1H. Whereas the orientation and morphologies of the domains in P(S-b-I) and the chain dynamics of isoprene chains are influenced by the finite--size and dimensionality of confinement, the segmental motion, related to the dynamic glass transition (DGT) of both styrene and isoprene blocks remains unaffected-in its relaxation time-within experimental accuracy. Effects of nanoscale confinement on the molecular dynamics therefore depend on a number of factors: the type of molecules (polymers, low molecular liquids), interfacial interactions and the dimensionality of the constraining geometries.
44

Adsorption Studies of Hazardous Air Pollutants in Microporous Adsorbents using Statistical Mechanical and Molecular Simulation Techniques

Kotdawala, Rasesh R 04 May 2007 (has links)
The primary goal of the research studies conducted was to apply statistical mechanical and computer simulation methods to describe the equilibrium behavior of hazardous dipolar/quadru-polar single-gases and mixtures confined in micro porous adsorbents. Statistical mechanical models capable of handling the energetic heterogeneity by complex electrostatic interactions between adsorbate-adsorbent and adsorbate-adsorbate electrostatic interactions were developed and studied. The heterogeneous pore shape and size of different adsorbents were taken into account by two different approaches described in the following paragraphs. Under certain conditions, the use of Mean Field Perturbation Theories (MFPTs) is more attractive than Monte-Carlo (MC) simulations because of the enhanced physical insights that they offer, as well as very low computational times required. Existing literature shows that the applications of MFPTs for studying adsorption of polar molecules were limited due to the orientation dependency of the intermolecular potentials for electrostatic interactions, that in turn poses the challenging problem of seeking analytical expressions for the various thermodynamic functions involved. Furthermore, other existing approaches of accounting for complex electrostatic interactions through hydrogen bonding have limitations due to the requirement of parameter estimation related to radial distribution functions and the critical orientation values of molecules for hydrogen bonds, which are generally obtained through MC simulations and X-ray scattering techniques. In the first stage of research efforts, an attempt was made to express angle-dependent intermolecular potentials in the form of angle-independent intermolecular potential terms by employing statistical averaging methods. In particular, the permanent dipole-dipole and permanent dipole-induced dipole intermolecular potentials were expressed as angle-averaged intermolecular potentials. Then, angle-averaged intermolecular potentials were used to predict water isotherms in nano-slit pores. Furthermore, the angle-averaged intermolecular potentials were used for a binary mixture of polar molecules (water-methanol) to predict the adsorption behavior in nano-slit pores. However, significant limitations of MFPTs arise when they are used for the study of adsorption in zeolites that exhibit irregular shaped cavities with surface heterogeneities. The latter certainly represent a future meaningful research direction. It should be pointed out, that the mean field approach allows us to predict equilibrium sorption properties in homogeneous adsorbents like graphitic carbon (slit), carbon nano tubes (cylinder) and highly siliceous faujasites (spherical) as they have regular shaped cavities. The applications of such kinds of theory remained limited due to the (generally) unknown distribution of functional sites on adsorbents of interests (mainly activated carbons and zeolites) and their locations in the adsorbent framework. The second stage of research efforts focused on models capable of incorporating surface heterogeneities and addressing complex pore geometries. The models developed relied on Grand Canonical Monte-Carlo (GCMC) simulations. In particular, two types of GCMC simulations were carried out, namely molecular and atomistic MC simulations. Both techniques were applied to simulate sorption isotherms on zeolites and activated carbon to remove mercury chloride (quadrupole), hydrogen cyanide (HCN, dipole) and methyl ethyl ketone (MEK, dipole) from air. The molecular based MC technique utilized molecular properties of the molecules namely dipole, quadrupole moments, molecular polarizability and molecule size (kinetic diameter). The molecule was considered to be a spherical shaped particle. The dispersion interactions were calculated using Vaan der Waals equation and electrostatic interactions were quantified through the multi-pole expansion method. This approach was used to simulate adsorption of HgCl2, HCN and MEK in zeolite NaX and activated carbon with functional sites namely carbonyl, hydroxyl and carboxyls. Simulation results indicated that HgCl2 sorption could be attributed to charge-induced dipole interactions for activated carbon, suggesting that sorbents with more number surface charges can be useful except for the case of carbonyls in which quadrupole moments plays a crucial role in reducing sorbent capacities, in turn implying that relative positions of positively and negatively charged cations are indeed important. However, for zeolite NaX, performance characteristics were primarily attributed to charge-quadrupole interactions and dispersion interactions. Moreover, zeolite-NaX performance characteristics for capturing HCN and MEK were attributed to dipole-Na interactions due to the relatively large dipole moments of the molecules under consideration. In the case of activated carbon, HCN sorption was governed by mainly charge-dipole and charge-induced dipole interactions, and hence, carbons with carboxyls seemed to perform better than hydroxyls and carbonyls. MEK sorption was influenced by dispersion interactions (due to the large polarizability of MEK) and charge-dipole interactions, which makes carbon with carbonyls more efficient rather than carbons with hydroxyls having the same charge densities. However, application of the aforementioned molecular approaches was limited to sorbents with regular shape cavities having some surface heterogeneity such as activated carbons. Finally, in order to account for sorbents with irregular shaped cavities, such as silicalite and mordenite, one needs to use atomistic MC simulations. The atomistic MC technique utilizes appropriate atomic sizes and charges for the molecules under consideration to quantify intermolecular forces among the adsorbate molecules and the atoms of the zeolite framework as well as activated carbon. The dispersion interactions were calculated using the Van-Der Waals equation and electrostatic interactions were quantified through a standard Coulombic equation. The bond distances among atoms were kept fixed but variations in angular movement and dihedral/torsional movements were considered, and appropriate harmonic potentials were used to account for angle bending and torsional effects. The sorption performance was evaluated for mordenite, silicalite and zeolite beta for a Si/Al ratio of 47-197 for both an HCN and MEK system. The results of HCN/MEK sorption suggested that silicalite has greater capacity than that of mordenites .In the case of MEK Zeolite beta with sodium cations, performance was better than that of mordenites and silicalites. Sorption of HCN in silicalite was observed in straight and zigzag channels, and mainly attributable to hydrogen bonding among HCN molecules. The increase in sodium cations however decreases the capacity of silicalite, zeolite beta and mordenite slightly. The sorption of MEK in mordenite was mainly observed in an 12- and 8-member ring channel. It was found that an increase in sodium cations did not increase the sorption capacity of mordenite significantly as most of the cations in mordenite were located in an 8-member ring channel where MEK molecules can not be accommodated properly due to steric effects. However, the sorption of MEK in zeolite beta seemed to be influenced by the presence of sodium cations as most of the cations are at the intersection of two 12 member rings which provide sufficient space to orient MEK molecules at the intersection and maximize electrostatic interactions. The sorption of MEK in silicalite exhibited similar trends as in the case of mordenite, as all cations were at the intersection of straight and zigzag channels . Finally, in the last Section of the Thesis, a comparative assessment was made of all three approaches in terms of their significance in applications and the ease in applying them.
45

Synthèse orthogonale de poly(triazole amide)s contenant des séquences codées synthétiques ou naturelles / Orthogonal synthesis of poly(triazole amide)s containing synthetic or natural encoded sequences

Fiers, Guillaume 19 September 2018 (has links)
Les poly(triazole amide)s sont une classe de polymères à séquences définies synthétisés par une approche « AB+CD » itérative, chimiosélective et supportée. Cette stratégie permet de contrôler parfaitement la séquence des monomères, puisque les unités constitutives sont ajoutées une à une. De plus, la chimiosélectivité des réactions de couplage permet de s’affranchir d’étapes de déprotection. En outre, l’utilisation d’un support solide minimise également le temps d’expérimentation et facilite les étapes de lavage, réduisant donc le temps total de synthèse. Cette voie de synthèse a été utilisée pour la préparation de différents types de polymères fonctionnels. Premièrement, plusieurs oligomères comme des structures composées de chaînes alkyles ou PEG ont été préparées, contenant des séquences de monomères non naturels qui forment un code binaire. Ces produits ont été analysés grâce à deux techniques de séquençage : la spectrométrie de masse en tandem et l’analyse de chaînes uniques par les nanopores. Une synthèse sans cuivre de ce type d’oligomères a également été considérée. Enfin, une nouvelle classe d’acides xénonucléiques (XNAs), les peptide triazole nucleic acids (PTzNAs), a été synthétisée et étudiée. En particulier, les propriétés d’hybridation de ces polymères contenant des séquences génétiques ont été examinées. / Poly(triazole amide)s are a class of sequence-defined polymers synthesized via a chemoselective iterative “AB+CD” approach on a solid support. This strategy allows to perfectly control the sequence of monomers, since the building blocks are added one by one. Moreover, the chemoselectivity of the coupling reactions enables to avoid the use of deprotection steps and to save time. In addition, the use of a solid support also minimizes the experiment time and facilitates the cleaning steps, thus reducing the total synthesis time. This synthesis pathway was used for the synthesis of different types of functional polymers. First of all, several oligomers such as structures based on alkyl or PEG chains were prepared, containing sequences of non-natural monomers that form a binary code. Those products were analyzed with two sequencing techniques: tandem mass spectrometry and nanopore single-chain analysis. A copper-free synthesis of this type of oligomers was also considered. Then, a new class of xeno nucleic acids (XNAs), peptide triazole nucleic acids (PTzNAs) was synthesized and studied. In particular, the hybridization properties of those natural sequence-containing polymers were investigated.
46

Prévention de l'adhésion bactérienne et du développement du biofilm sur les dispositifs médicaux de la perfusion via les surfaces nanostructurées. / Prevention of bacterial adhesion and biofilm development on perfusion medical devices with nanostructured surfaces

Desrousseaux, Camille 17 July 2015 (has links)
Les infections nosocomiales liées aux dispositifs médicaux, et plus particulièrement ceux de la perfusion, sont un problème majeur dans le milieu hospitalier. Ces infections sont liées à la présence de biofilm. Pour lutter contre le biofilm, les mesures préventives en hygiène ne sont pas suffisantes. Les recherches se dirigent vers la modification des surfaces des matériaux des dispositifs médicaux: ajout de substances biocides, développement de surfaces antiadhésives par voie chimique ou topographique. L’objectif de cette thèse est de créer des polymères nanostructurés pouvant entrer dans la composition de dispositifs médicaux de la perfusion et de tester leur impact sur l’adhésion bactérienne et le développement du biofilm. Dans un premier temps, la technique de nanostructuration choisie repose sur la réplication d’un moule nanostructuré en alumine nanoporeuse qui se caractérise par des nanopores auto-organisés en nid d’abeille. Après avoir mis en place une station d’anodisation permettant la nanostructuration de ce moule, la reproductibilité du procédé de fabrication a été validée (diamètre des pores : 51 ± 6 nm, profondeur: 97 ± 9 nm, espace interpores: 102 ± 6 nm). Ensuite, les travaux de réplication ont été effectués avec le polymère ABS (acrylonitrile-butadiène-styrène). Plusieurs méthodes de réplication ont été testées à partir de dépôt de solutions de polymères ou de fonte du matériau sur le moule d’alumine. La méthode sélectionnée sur des critères de reproductibilité et de facilité de transposition industrielle donne des nanostructures de type nanopicots (diamètres des picots : 56 ± 7 nm, distances interpicots : 101 ± 16 nm, longueurs : 73 ± 33 nm). Les surfaces développées sont ensuite caractérisées (MEB, DSC analyse calorimétrique différentielle, spectrométrie Infra Rouge, angle de contact). La fabrication des nanostructures ne semble pas dégrader le matériau ABS et la modification topographique rend la surface plus hydrophile. Une étude de stabilité montre que les nanostructures résistent à plusieurs modes de stérilisation (oxyde d’éthylène, plasma H2O2 et rayon Beta) et sont conservés dans le temps, ce qui les rend applicables à la surface d’un dispositif médical. La seconde étape du travail consiste à évaluer l’adhésion bactérienne sur les surfaces témoins et nanostructurées. Différents tests de culture de biofilm ont été réalisés avec S. epidermidis en conditions statique ou dynamique. Après un temps de 3 à 48h, les bactéries sont décrochées de la surface puis dénombrées sur gélose. Il n’y a pas de différence significative d’adhésion bactérienne entre les deux types de surface. L’observation en microscopie électronique à balayage et confocale à 24h semble confirmer ce résultat. Des tests réalisés avec d’autres souches bactériennes (S. aureus, K. pneumoniae, P. aeruginosa) en condition statique montrent également que l’adhésion est également identique sur les deux surfaces. Par conséquent, nous pouvons conclure que nos surfaces ABS développées avec ces nanopicots spécifiques n’ont pas un effet anti-adhésion sur les bactéries testées. Des recherches récentes mettent en évidence que l’espacement entre les nanopciots est un facteur critique sur l’adhésion bactérienne. L’étape suivante de notre travail consiste à tester de nouvelles nanostructures réalisées avec un moule AAO ayant une distance interpore plus grande. / Medical device-related infections are a public health concern and an economic burden. The role of biofilms in medical device-related infections is clearly established. Preventive hygiene measures are not often sufficient to prevent biofilms formation. One promising way of preventing device-related infections is the development of medical devices with surfaces or materials that reduce either microbial viability using biocidal substances or microbial adhesion with topographical modifications.Developing nanostructured polymeric surfaces, which could have applications in medical devices, and testing their impact on bacterial adhesion and biofilm development were the main goals of this thesis. First of all, the polymer was replicated on an aluminum anodized oxide nanostructured mold (AAO), characterized by highly ordered nanopores. An anodization station was made in order to create molds. Then, the reproducibility of the process fabrication was validated (pore diameter: 51 ± 6 nm, deepness 97 ± 9 nm, interpore espace: 102 ± 6 nm). Several replication techniques with ABS were tested including polymers solutions and melted polymers. The selected method was the one with the most reproducible results pillar diameter: 56 ± 7 nm, interpillar distance: 101 ± 16 nm, length: 73 ± 33 nm) and the most representative of industrial injection processes. The created surfaces were then characterized (MEB, DSC, ATR-FTIR, wettability). The fabrication process does not seem to degrade the ABS material and the topographical change increases the hydrophilicity of the surface. A stability study showed that the nanopillars were resistant to several sterilization processes (ethylene oxide, H2O2 plasma, Beta irradiation) and were maintained through time, which is an important element for applications in medical-devices.The second step of our work consisted of assessing bacterial adhesion on control and nanostructured ABS samples. Several biofilm tests were made with S. epidermis in static and dynamic conditions. Between 3 and 48 hours of culture, bacteria were removed from the surfaces and then viable plate counting was performed. No significant differences were observed between the samples. Microscopic observations (MEB, CSLM) seemed to confirm this result. Other bacteria with different morphologies were tested (S. aureus, K. pneumoniae, P. aeruginosa): bacterial adhesion was similar for the two surfaces. Therefore, we can conclude that our developed ABS surfaces with these specific nanopillars do not have an anti-adhesion effect on the tested bacteria. Recent researches showed that spacing between nanopillars is a critical factor on bacterial adhesion. The following step of our work would be to test new nanostructures using AAO molds with bigger interpore distance.
47

L'eau et l'électron hydraté en milieu confiné : des propriétés physico-chimiques à la réactivité

Coudert, François-Xavier 18 June 2007 (has links) (PDF)
Lorsqu'un fluide est confiné dans un espace de dimensions moléculaires, il se produit une modification notable de son comportement physico-chimique par rapport au fluide bulk (ou massique). Le confinement joue un rôle important dans de nombreux systèmes, des membranes biologiques aux matériaux nanoporeux utilisés dans l'industrie. Cette thèse est dévolue à l'étude de l'effet du confinement sur les propriétés de l'eau confinée dans des nanopores de zéolithes.<br /><br />Dans un premier temps, je présente l'effet du confinement sur les propriétés structurales, dynamiques, thermodynamiques et électroniques de l'eau liquide : le dipôle de la molécule d'eau, son spectre infrarouge, sa dynamique de diffusion et de réorientation sont notamment présentés. L'interaction entre l'eau et la surface interne de la zéolithe a été caractérisée à la fois pour des zéolithes hydrophobes (silicées) et hydrophiles (cationiques). Nous avons montré que, dans le cas d'une zéolithe silicée, il n'existe pas de liaison hydrogène entre l'eau et la zéolithe.<br /><br />Dans un second temps, j'ai examiné l'effet du confinement sur la structure, la dynamique et la réactivité des espèces solvatées dans l'eau. Cette étude a été menée sur le cas particulier de l'électron solvaté, choisi pour son intérêt tant expérimental (la radiolyse de l'eau confinée est encore mal connue) que théorique (l'électron solvaté est le plus simple des réducteurs). Nous avons montré que l'évolution du spectre de l'électron hydraté confiné dans la zéolithe, observée expérimentalement, peut s'expliquer par un effet de densité locale de l'eau.
48

Study of magnetic properties of nanostructures on self-assembled patterns

Malwela, Thomas. January 2010 (has links)
In the current study, we give a report when oxalic acid was used as an electrolyte to synthesize an AAO template with hexagonal pore array. Optimum parameters were observed as 0.4 M of oxalic acid, anodizing voltage of 45 V, temperature of approximately 8 °C and the period of 120 minutes. Atomic force microscope (AFM) and High resolution scanning electron microscope (HRSEM) showed that template has an average pore diameter of 103 nm. Co and MnOx (x = 1,2) nanostructures were selectively deposited in the pores of the template using a novel atomic layer deposition (ALD) technique. The diameter sizes and the array of the nanostructures and the template were corresponding. Energy dispersive xrays (EDX) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of Co and MnOx (x =1,2) on the samples while x-ray diffraction (XRD) provided an indication of their orientations. Magnetic force microscopy as main characterization tool showed the existence of multi-domains on both Co and MnOx (x =1,2) nanostructures.
49

Directing macromolecular assemblies by tailored surface functionalizations of nanoporous alumina

Lazzara, Thomas Dominic 16 May 2011 (has links)
No description available.
50

Study of magnetic properties of nanostructures on self-assembled patterns

Malwela, Thomas. January 2010 (has links)
In the current study, we give a report when oxalic acid was used as an electrolyte to synthesize an AAO template with hexagonal pore array. Optimum parameters were observed as 0.4 M of oxalic acid, anodizing voltage of 45 V, temperature of approximately 8 °C and the period of 120 minutes. Atomic force microscope (AFM) and High resolution scanning electron microscope (HRSEM) showed that template has an average pore diameter of 103 nm. Co and MnOx (x = 1,2) nanostructures were selectively deposited in the pores of the template using a novel atomic layer deposition (ALD) technique. The diameter sizes and the array of the nanostructures and the template were corresponding. Energy dispersive xrays (EDX) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of Co and MnOx (x =1,2) on the samples while x-ray diffraction (XRD) provided an indication of their orientations. Magnetic force microscopy as main characterization tool showed the existence of multi-domains on both Co and MnOx (x =1,2) nanostructures.

Page generated in 0.0629 seconds