• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1392
  • 374
  • 174
  • 43
  • 33
  • 20
  • 16
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2629
  • 658
  • 573
  • 484
  • 378
  • 368
  • 307
  • 301
  • 226
  • 189
  • 182
  • 179
  • 161
  • 153
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

SUPRAMOLECULAR ASSEMBLY OF DENDRITIC POLYIONS INTORESPONSIVE NANOSTRUCTURES

Eghtesadi, Seyed Ali 24 May 2018 (has links)
No description available.
652

Near Single-Molecule SERS-Based Detection Using Ultrafiltered, Unfunctionalized Silver Nanoparticles

Baker, Joshua Dale 05 September 2012 (has links)
No description available.
653

Study of non-contact on-site surface roughness measurement

Jia, Huiwen 10 1900 (has links)
<p>A non-contact on-site surface roughness measurement method was investigated in experimental and simulation approaches. The resolution of the vertical surface roughness was obtained at 20 nm by using self-interference theory. Various surface roughness measurement techniques, such as mechanical stylus, AFM and Michelson interferometer, were employed for different roughness samples. The novelty of this study was to measure the surface roughness on a rotating sample. For each sample with different step height, corresponding intensity distribution data was obtained and analyzed. The fringe visibility ratio resulted in a curve that is related to the step height, which represents the roughness. The results from simulations for all samples were compared with experimental data. Good agreements were obtained for the studied conditions.</p> / Master of Applied Science (MASc)
654

SPECTRAL ENGINEERING VIA SILICON NANOCRYSTALS GROWN BY ECR-PECVD FOR PHOTOVOLTAIC APPLICATIONS

Sacks, Justin 10 1900 (has links)
<p>The aim of third-generation photovoltaics (PV) is ultimately to achieve low-cost, high-efficiency devices. This work focused on a third-generation PV concept known as down-shifting, which is the conversion of high-energy photons into low-energy photons which are more useful for a typical solar cell. Silicon nanocrystals (Si-NCs) fabricated using electron-cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD) were studied as a down-shifting material for single-junction silicon cells. A calibration was done to determine optimal deposition parameters for Si-NC formation. An experiment was then done to determine the effect of film thickness on emission, optical properties, and photoluminescence quantum efficiencies.</p> <p>Photoluminescence (PL) peaks varied depending on the stoichiometry of the films, ranging from approximately 790 nm to 850 nm. Variable-angle spectroscopic ellipsometry was used to determine the optical constants of the Si-NC films. The extinction coefficients indicated strong absorption below 500 nm, ideal for a down-shifting material. Transmission Electron Microscopy (TEM) was used to determine the size, density, and distribution of Si-NCs in two of the films. Si-NCs were seen to have an average diameter of approximately 4 nm, with larger nanocrystals more common near the surface of the film. A density of approximately 10<sup>5</sup> nanocrystals per cubic micron was approximated from one of the TEM samples.</p> <p>The design and implementation of a PL quantum efficiency measurement system was achieved, using an integrating sphere to measure the absolute efficiency of Si-NC emission. Internal quantum efficiencies (IQE) as high as 1.84% and external quantum efficiencies (EQE) of up to 0.19% were measured. The EQE was found to increase with thicker films due to more intense photoluminescence; however the IQE remained relatively independent of film thickness.</p> / Master of Applied Science (MASc)
655

Growth of InAs/InP Nanowires by Molecular Beam Epitaxy

Haapamaki, Christopher M. 04 1900 (has links)
<p>InP nanowires with short InAs segments were grown on InP (111)B substrates by Au assisted vapour-liquid-solid growth in a gas source molecular beam epitaxy system. Nanowire crystal structure and morphology were investigated by transmission electron microscopy as a function of temperature, growth rate, and V/III flux ratio. At 370C predominantly kinked nanowires with random morphology and low areal density were observed with a rough parasitic 2D film. At 440C, nanowire density was also reduced but the 2D film growth was smoother and nanowires grew straight without kinking. An optimum temperature of 400C maximized areal density with uniform nanowire morphology. At the optimum temperature of 400C, an increase in V/III flux ratio changed the nanowire morphology from rod-shaped to pencil like indicating increased radial growth. Growth rate did not affect the crystal structure of InP nanowires. For InAs nanowires, changing the growth rate from 1 to 0.5 μm/hr reduced the presence of stacking faults to as low as one per nanowire. Short InAs segments in InP nanowires were found to grow through two mechanisms for nanowires of length L and diameter D. The first mechanism described the supply of In to the growth front via purging of In from the Au droplet where L was proportional to D. The second mechanism involved direct deposition of adatoms on the nanowire sidewall and subsequent diffusion to the growth front where L was proportional to 1/D. For intermediate growth durations, a transition between these two mechanisms was observed. For InP and InAs nanowires, the growth mode was varied from axial to radial through the inclusion of Al to form a core shell structure. Al<sub>x</sub>In<sub>1-x</sub>As(P) shells were grown on InAs cores with Al alloy fractions between 0.53 and 0.2. These nanowires were examined by transmission electron microscopy and it was found, for all values of x in InAs-Al<sub>x</sub>In<sub>1-x</sub>P structures, that relaxation had occurred through the introduction of dislocations. For InAs-Al<sub>x</sub>In<sub>1-x</sub>As structures, all values except x=0.2 had relaxed through dislocation formation. A critical thickness model was developed to determine the core-shell coherency limits which confirmed the experimental observation of strain relaxation. The effects of passivation on the electronic transport and the optical properties were examined as a function of structural core-shell passivation and chemical passivation. The mechanisms for the observed improvement in mobility for core-shell versus bare InAs nanowires was due to the reduction in ionized impurity scattering from surface states. Similarly an increase in photoluminescence intensity after ammonium sulfide passivation was explained by the reduction of donor type surface states.</p> / Doctor of Philosophy (PhD)
656

GROWTH AND MODELLING OF InGaP NANOWIRES BY MBE

Fakhr, Ahmed 10 1900 (has links)
<p>The growth of ternary InGaP nanowires (NWs) is explored. Free-standing NWs are grown with the Au nanoparticle-assisted method using a gas source molecular beam epitaxy (GS-MBE) system. The grown samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). These characterization techniques were employed to examine the composition of the InGaP NWs, the morphology and the crystal structure. With varying the growth conditions, such as temperature, growth rate and V/III flux, a dependence of the NWs' composition, morphology and crystal structure were observed. In addition, the characteristics of the NWs showed great dependence on the diameter of the Au seed particle responsible for the NW growth.</p> <p>A physical-based growth model is developed to understand the NW growth results. The model deals with each of the group-III growth species differently and splits the group-V into two components, with each component associated with one of the group-III species. The model is able to match composition and morphology results obtained from the experimental data.</p> <p>Furthermore, a nucleation-based model is employed and integrated with the growth model to predict the crystal structure of the NWs. Based on this model, the operating regions for all out samples were illustrated. In addition, the dependence of the crystal structure of the NWs on the Au seed diameter, in our samples, was attributed to the change in the surface energies of the formed nucleus as the Au seed diameter change.</p> / Doctor of Engineering (DEng)
657

Reactive Magnetron Sputtering as a Growth Alternative for Gallium Nitride Nanowires

Jewell, Nikolaus A. January 2014 (has links)
<p>Gallium nitride (GaN) nanowires are high-performance materials with wide, direct bandgaps and superior electronic properties. Although their properties make them of great interest for next-generation technologies, widespread adoption has been limited by expensive production processes. Here, the results of growing GaN nanowires via DC magnetron sputtering at different temperatures and using different metal catalysts are reported.</p> <p>A new substrate heater was designed to minimize contamination from the heater filament and increase the substrate temperature window to in excess of 800°C. Sixteen-mm<sup>2</sup> (111) silicon samples had one-to-four nm of a metal catalyst deposited on them using evaporation. This metal catalyst layer (gold, platinum, or nickel) was employed to induce catalyst-assisted vapor-liquid-solid nanowire growth. GaN was deposited via a reactive nitrogen DC magnetron sputtering system. Surface morphology and composition were analyzed using both scanning and transmission electron microscopy. Energy-dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy were used to measure the presence of gallium and nitrogen in the resulting nanowires, respectively.</p> <p>This furnace significantly reduced tungsten contamination to below the detectable levels of EDS. GaN nanowires were present on gold-catalyzed samples only in the gold-covered region of the silicon substrate exposed to a gallium flux. Nanowire morphology improved as temperature was elevated, but it did so at the cost of lower areal density. Conversely, platinum-coated samples yielded fewer nanowires than their gold-coated counterparts. Samples that had nickel deposited on them displayed the best GaN nanowire growths. They had the best surface morphologies, had negligible oxygen concentrations, and were single crystalline.</p> / Master of Applied Science (MASc)
658

NOVEL SELF-ASSEMBLY OF CRYSTALLINE MgAl2O4 NANOSTRUCTURES PROMOTED BY ANNEALING A GOLD OVERLAYER ON A (111) MgAl2O4 SUBSTRATE

Majdi, Tahereh 15 January 2015 (has links)
<p>The solid state dewetting characteristics of thin gold films sputtered onto (111) MgAl<sub>2</sub>O<sub>4</sub> substrates were investigated. Prior research done on this system reported discovering the self-assembly of intricately shaped nanostructures, consisting of a faceted sphere lying above a truncated triangular pyramid, formed by applying a specific two stage heating profile. The current work was done to provide deeper insight on the odd self-assembly observed in this system. The results indicate that the intricate structures are not purely gold self-assemblies, but in fact consist of three distinct materials: a single crystal or polycrystalline gold faceted sphere, separated by an interfacial boundary layer, from above a crystalline MgAl<sub>2</sub>O<sub>4</sub> necking structure that spontaneously developed from the initially flat substrate. The boundary separating these two assemblies is confined within a thin, sharp region of a third material consisting of Au and O elements. The composition and crystalline nature of the individual nanostructures were studied using high angle annular dark-field imaging, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy employed by a high resolution transmission electron microscope. Two-dimensional X-ray diffraction texture analysis revealed that the gold nanoparticles are crystalline, with majority of the maximum intensity signal corresponding to the epitaxial alignment of the gold nanoparticles with the substrate. The MgAl<sub>2</sub>O<sub>4</sub> necking structures were found to be sensitive to both the annealing profile, and the thickness of the gold film, which influenced the distinguishable presence, size, and footprint of the MgAl<sub>2</sub>O<sub>4</sub> nanostructures. Atomic force microscopy and scanning electron microscopy results were consistent with the gold overlayer playing an essential role in the self-assembly of MgAl<sub>2</sub>O<sub>4</sub> nanostructures. While the fundamental mechanisms that govern this phenomenon are not entirely clear, the presented results do provide insight into the role of interfaces in heteroepitaxial systems, especially the self-assembly of crystalline nanostructures from a previously stable substrate.</p> / Master of Applied Science (MASc)
659

Electron Energy Loss Spectroscopy of Metallic Nanostructures and Carbon Nanotubes

Rossouw, David 01 September 2014 (has links)
<p>In this thesis, a modern transmission electron microscope is used to perform high-resolution electron energy loss studies of metallic nanostructures and carbon nanotubes.</p> <p>The remarkable optical properties of metallic nanostructures arise from the excita- tion of surface plasmons. With improved instrumentation, surface plasmon resonances are imaged in a variety of nanostructures, enabling a greater understanding of their behaviour in nanoscale systems. It is shown that surface plasmons set up multiple high order resonances in silver nanorods, and they freely propagate around sharp corners in silver nanowires. It is also demonstrated that silver nanorice structures resonate in a similar manner to nanorods, despite the high density of stacking faults in the structure. Finally, a complementary structural pair is found to resonate in a complementary fashion, in agreement with Babinet’s principle.</p> <p>Carbon nanotubes exhibit unique physicochemical properties that have led to their use in a variety of novel materials science applications. Despite rapid progress in the theoretical and experimental investigation of carbon nanotubes, techniques capable of studying the structural and electronic properties of individual tubes are limited. Here, it is demonstrated that the spectral signature of carbon can be used to identify the electronic character of individual single-walled carbon nanotubes. In addition, a new technique is used to map bonding anisotropy in a multi-walled carbon nanotube.</p> <p>Also presented in this thesis is the design and construction of a unique laser-TEM system. Early results from the system include in-situ measurements of laser-induced structural and electronic distortions in individual carbon nanotubes.</p> / Doctor of Philosophy (PhD)
660

High magnetic field effects in low-dimensional carbon nanostructures

Alexander-Webber, Jack A. January 2013 (has links)
This thesis describes studies of graphene, single walled carbon nanotubes (SWNTs) and InSb. Optical and electronic measurements probe the effects of high magnetic fields on these low-dimensional systems. Chapter 1 introduces a theoretical description and background behind the materials and physical phenomena studied in this work. The structure and unique properties of carbon nano-materials are described. The experimental methods used in this thesis are described in Chapter 2. Chapter 3 describes magnetotransport measurements on InSb/AlInSb heterostructures revealing that the large energy gaps, and extremely high mobility, associated with this system leads to exceptionally well defined quantum Hall plateaux for both even (Landau level) and odd (spin-split) filling factors. Even higher cyclotron energy gaps are expected in graphene. Chapter 4 reveals that due to a combination of large cyclotron energy gaps and fast electron-phonon energy loss rates, the quantum Hall effect (QHE) in graphene can be observed to unprecedented current densities (43 A/m) and temperatures (> 45 K). The behaviour of epitaxial graphene grown on silicon carbide in the quantum Hall regime is shown to be characterised by a strongly magnetic field dependent carrier density due to charge transfer from surface donor states in the substrate. Chapter 5 shows that polymer wrapping of SWNTs can achieve high quality purified samples. Individual SWNTs were probed using micro-photoluminescence measurements in magnetic fields up to 30 T. The combination of high magnetic fields and high spectral and spatial resolution allowed a detailed study of exciton fine structure. High intensity laser irradiation is shown to induce bound excitons in pristine tubes. The optical properties of a number of tubes are dominated by defect sites which may be imaged along the tube using the magnetic brightening of dark excitons associated with such defects.

Page generated in 0.0413 seconds