• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 405
  • 103
  • 85
  • 65
  • 12
  • 11
  • 8
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 843
  • 143
  • 110
  • 98
  • 96
  • 85
  • 83
  • 69
  • 66
  • 65
  • 64
  • 64
  • 63
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Nanostructured Approaches to Light Management in Thin Silicon Solar Cells and Silicon-based Tandems

January 2019 (has links)
abstract: Semiconductor nanostructures are promising building blocks for light management in thin silicon solar cells and silicon-based tandems due their tunable optical properties. The present dissertation is organized along three main research areas: (1) characterization and modeling of III-V nanowires as active elements of solar cell tandems, (2) modeling of silicon nanopillars for reduced optical losses in ultra-thin silicon solar cells, and (3) characterization and modeling of nanoparticle-based optical coatings for light management. First, the recombination mechanisms in polytype GaAs nanowires are studied through photoluminescence measurements coupled with rate equation analysis. When photons are absorbed in polytype nanowires, electrons and holes quickly thermalize to the band-edges of the zinc-blende and wurtzite phases, recombining indirectly in space across the type-II offset. Using a rate equation model, different configurations of polytype defects along the nanowire are investigated, which compare well with experiment considering spatially indirect recombination between different polytypes, and defect-related recombination due to twin planes and other defects. The presented analysis is a path towards predicting the performance of nanowire-based solar cells. Following this topic, the optical mechanisms in silicon nanopillar arrays are investigated using full-wave optical simulations in comparison to measured reflectance data. The simulated electric field energy density profiles are used to elucidate the mechanisms contributing to the reduced front surface reflectance. Strong forward scattering and resonant absorption are observed for shorter- and longer- aspect ratio nanopillars, respectively, with the sub-wavelength periodicity causing additional diffraction. Their potential for light-trapping is investigated using full-wave optical simulation of an ultra-thin nanostructured substrate, where the conventional light-trapping limit is exceeded for near-bandgap wavelengths. Finally, the correlation between the optical properties of silicon nanoparticle layers to their respective pore size distributions is investigated using optical and structural characterization coupled with full-wave optical simulation. The presence of scattering is experimentally correlated to wider pore size distributions obtained from nitrogen adsorption measurements. The correlation is validated with optical simulation of random and clustered structures, with the latter approximating experimental. Reduced structural inhomogeneity in low-refractive-index nanoparticle inter-layers at the metal/semiconductor interface improves their performance as back reflectors, while reducing parasitic absorption in the metal. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
202

The Effects Of Varying Plating Variables On The Morphology Of Palladium Nanostructures For Hydrogen Sensing Applications

Ortiz, Ophir 13 October 2004 (has links)
Present state-of-the-art hydrogen sensors are limited by a number of defects such as poisoning effects, slow response, and/or the range of concentrations that can be detected. Thus, hydrogen sensors are currently under investigation. In the search for the ultimate sensor, a variety of materials have been employed as the sensing layer. One of these materials is palladium. Palladium is widely used for hydrogen sensing due to its high selectivity and property of spontaneously absorbing hydrogen. Thin and thick film palladium hydrogen sensors have been reported, as well as palladium nanostructures. Specifically, palladium nanowires for hydrogen sensing have had improved results relative to other types of sensors; these have been reported with a response time down to 75ms and do not suffer from poisoning effects. Additionally, the fabrication of these nanostructures via electrodeposition is simple and cost efficient. For this reason, palladium nanostructures were chosen as the front-end for a novel hydrogen sensor. The nanostructures were to be employed as the sensing front-end of a Surface Acoustic Wave (SAW) sensor. It was theorized that the response time would be vastly improved if these were used as opposed to a thin or thick palladium film due to the decreased hydrogen diffusion distance, which is a result of the structures being one-dimensional. Because it was theorized that the dimensions of the nanostructures play an integral role in the response time to hydrogen, control of the morphology was required. This control was achieved by varying the plating variables in the electrodeposition experiments. The plating variables investigated were deposition potential, time, and counter-electrode area. The dimensions of the resulting nanostructures were measured via Scanning Electron Microscopy (SEM) and correlated to the conditions of the electrodeposition experiments. Nanowires under 40nm were successfully fabricated.
203

準單晶碲化鉍奈米線和薄膜的熱電性質研究 / Thermoelectric properties in crystalline Bi2Te3 nanowires and thin films

陳尚謙, Chen, Shang Chien Unknown Date (has links)
碲化鉍((Bi2Te3)是熱電材料轉換效率較高的元件,其優質係數ZT值約為1。希望藉由奈米的量子效應提升它的熱電性質,我們製作一系列低維度的奈米線和薄膜來進行研究。本實驗使用的碲化鉍奈米線乃利用薄膜樣品與基板的熱膨脹係數不同,經由熱處理在碲化鉍的薄膜上長出奈米線。由掃描式電子式顯微鏡和穿隧式電子顯微鏡可以觀察到菱形晶胞(Rhombohedral unit cell)結構的碲化鉍奈米線沿著(110)方向生長,直徑約150-330 nm長度約20-30 μm。將碲化鉍奈米線轉移到矽晶片上,運用半導體製程中的熱蒸鍍(Evaporator)以及電子束曝光系統(E-Beam writer)製作電極、熱電偶和加熱器來量測席貝克(Seebeck) 係數、電傳導率和熱傳導率。最後成功的製作與量測出p型(107 μV/k) 和n型(-52.8 μV/k) 的奈米線,雖然其席貝克係數小於塊材,但奈米線的熱傳導率低於塊材兩倍以上,研究發現最好的碲化鉍奈米線的熱電優值(ZT value) 可達1.18略大於塊材。 碲化鉍薄膜是以分子束磊晶 (Molecular Beam epitaxy)成長,分子束磊晶是在高真空下以物理的方式將高純度的材料4N (99.99%)將原子傳遞至基板上進行沉積反應形成,鍍率可低於0.1 nm/秒以下,因此可以製備出高品質的薄膜樣品,製造出各種不同比例的Bi-Te的薄膜。藉由X光繞射儀可以得知薄膜是菱形晶胞結構並且延著(0,0,l)的平面所成長。並用熱電偶成功的量測出薄膜的席貝克係數在室溫下座落於80-80 μV/k,電阻率5-30 μΩ-m,計算出功率因子(power factor)最高可達2000 μW/mK^2,與塊材相比低於一半,但是薄膜的熱傳導率同樣也低於塊材兩倍以上。最後得到最佳的碲化鉍薄膜的熱電優值(ZT value) 可達到1.01等同於塊材。 / Bismuth telluride (Bi2Te3) is the thermoelectric material used for high-efficiency energy conversion. The figure of merit ZT of bulk is around 1. To study the promising positive effects on the thermoelectric properties, low dimensional nanowires and thin films of Bi2Te3 were prepared and measurements were performed. Here the method applied to nanowires growth on Bi2Te3 thin films is the mismatch of thermal expansion between substrate and thin films. By annealing at 300-350℃ for a week, the nanowires were grown on the thin films. Rhombohedral structure of Bi2Te3 nanowires with diameter ~150-330 nm and length ~20-30 μm grew along (110) direction was confirmed by Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction Pattern (SAED). To measure the Seebeck coefficient, electrical conductivity and thermal conductivity, Bi2Te3 nanowires were moved to silicon chips. Electrodes, thermometers and heaters were fabricated through thermal evaporation and E-Beam lithography processes. We successfully grew p-type(107 μV/k) and n-type(-52.8 μV/k) nanowires. Although Seebeck coefficient of nanowires is smaller than that of bulks, its thermal conductivity is less than half of that of bulks. The best ZT value of nanowires we obtained was 1.18, which was slightly larger than that of the bulks. Molecular beam epitaxy (MBE) is a technique to grow Bi2Te3 thin films under extremely high vacuum, which is undergoing a physical vapor deposition to atomically grow thin films layer by layer. Due to the deposition rate is lower than 0.1 nm/s, we can deposit the high-quality thin films and adjust the ratio between bismuth and telluride. Rhombohedral structure of thin films grew along (110) plane was confirmed by X-Ray Diffraction (XRD). The Seebeck coefficient (80-80 μV/k) and electrical resistivity (5-30 μΩ-m) in room temperature are obtained by the thermocouples. The highest power factor can reach to 2000 μW/mK^2. While the power factor of thin films is about half of bulk ‘s value, the thermal conductivity of thin films is also half of that of bulks. The best ZT value of thin films obtained was nearly as same as that of bulks, 1.01.
204

Aligned and oriented polyaniline nanofibers fabrication and applications /

Chiou, Nan-Rong. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Full text release at OhioLINK's ETD Center delayed at author's request
205

Electromechanical Investigation of Low Dimensional Nanomaterials for NEMS Applications

January 2011 (has links)
Successful operation of Nano-ElectroMechanical Systems (NEMS) critically depends on their working environment and component materials' electromechanical properties. It is equally important that ambient or liquid environment to be seriously considered for NEMS to work as high sensitivity sensors with commercial viabilities. Firstly, to understand interaction between NEMS oscillator and fluid, transfer function of suspended gold nanowire NEMS devices in fluid was calculated. It was found that NEMS's resonance frequency decreased and energy dissipation increased, which constrained its sensitivity. Sensitivity limit of NEMS oscillators was also considered in a statistical framework. Subsequently, suspended gold nanowire NEMS devices were magnetomotively actuated in vacuum and liquid. Secondly, electromechanical properties of gold nanowires were carefully studied and the observed size effect was found to agree with theory, which predicted small changes of electromechanical property compared with bulk gold materials. Finally, it is well recognized that continuous development of new NEMS devices demands novel materials. Mechanical properties of new two-dimensional hexagonal Boron Nitride films with a few atomic layers were studied. Outlook of utilizing ultrathm BN films in next generation NEMS devices was discussed.
206

Solution based methods for synthesis of tin and zinc; wires and thin films

Johansson, Sofie January 2012 (has links)
In this work two different solution based methods have been used for synthesis ofoxide-wires and homogeneous heterometallic oxides of transparent conductingmaterials. The first method used is an aqueous chemical growth (ACG) method for synthesis ofmicrorods and nanowires of zinc oxide and tin dioxide useful for detection of toxicgases. No desired films have been obtained but some new interesting structures withnew surfaces at the a,b-plane, especially for zinc oxide where a jagged surface hasbeen observed. For low metal-concentrations of zinc, a band-like structure with 120 °angles has been observed to grow along the a- and b-axis instead of the preferredc-axis. The rod- and wire films have been characterized by SEM and XRD. The other solution-based method used is an inorganic sol-gel type where aheterometallic oxide of 80 mol% zinc and 20 mol% tin manufactured for CIGS solarcells acts as an absorption layer. The alkoxide was prepared by first synthesizing a zincmethoxy-ethoxide solution from diethylzinc and methoxy-ethanol and then mixing itwith tin tert-butoxide to get a heterometallic alkoxide solution. Films and powderhave been prepared either in humidified argon atmosphere or in air and characterizedby SEM, TGA and XRD. The XRD pattern just show the two expected phases of zincoxide and the heterometallic zin-tin oxide which improves the homogeneity of theheterometallic oxide. But the TGA show that some carbonating species formed. This method seems promising for large scale manufacturing of absorption layer toCIGS solar cell for commercially use due to low-cost materials, low temperatures andcheap equipment.
207

Novel ZnS Nanostructures: Synthesis, Growth Mechanism, and Applications

Moore, Daniel Frankel 27 October 2006 (has links)
Motivated by a desire to understand the basic concepts of one-dimensional nanostructure growth, the research described in this thesis aims at understanding the basic mechanisms controlling the synthesis and formation of a specific group of II-VI semiconducting nanostructures. In particular, this thesis examines one-dimensional nanostructures (such as nanobelts and nanowires) and different morphologies of ZnS that result from the interesting properties that the materials have at the nanoscale. In order to understand how to tune these properties in the nanostructure, it is necessary to have an understanding of the growth mechanism that dictates the morphology, structure, and rate of growth of the nanomaterial. It is necessary to understand what impact changes to the macroscopic setup in the experiment have on the nanoscopic scale of the nanomaterials. Having a larger understanding and exerting more precise control over the growth of nanomaterials will allow a higher level of selectivity, more control over dimensionality and the type of morphology, easier manipulation, and the simpler incorporation of these structures into a nanotechnological device. The main focus of the research was on CdSe and ZnS, with the bulk of the research being conducted on ZnS nanostructures. These materials were chosen for their potential for extensive research, their possible applications in optoelectronics, their potential to form the wurtzite crystal structure, and the potential generalization of results to other nanomaterials. The framework for the research is given first. Then a description of the experimental setup and a model for the growth of nanostructures is discussed. A brief overview of the synthesis of CdSe nanostructures is given and then a detailed analysis of the synthesis of specific ZnS one-dimensional morphologies is presented.
208

Developing a Sample Ionization Technology in Mass Spectrometry for Proteomics

Jeng, Jingyueh 05 August 2004 (has links)
none
209

Synthesis Of Silver Nanowires Through Polyol Process

Coskun, Sahin 01 February 2012 (has links) (PDF)
Nanotechnology enabled synthesis of various shapes and morphologies of conventional materials. Nanotubes, nanoparticles, quantum dots and nanowires are the new form of materials. Especially nanowires have gotten great attention due to their unique physical, chemical and optical properties. Superior properties of nanowires are based on their high surface area and two quantum confinement directions. Silver is one of the most conductive metals and it has the highest thermal conductivity. Due to excellent properties of bulk silver its nanostructures especially silver nanowires have been widely studied. Silver nanowires have been demonstrated to be used in optical polarizers, photonic crystals, surface enhanced Raman spectroscopy and recently transparent and conducting electodes. Hence, production of silver nanowires through a cost-effective and well controlled method could make important contributions to these and other unprecedented. So far, many different methods have been explored for the synthesis of silver nanowires. Vapor-liquid-solid (VLS) technique, hard template techniques such as porous anodic alumina synthesis and soft template techniques such as DNA based synthesis and polyol process are some silver nanowire synthesis methods. Among these methods, solution based polyol process is the most feasible one in terms of cost, yield and simplicity. In this thesis, polyol process, which is a novel and solution based method enabling the synthesis of silver nanowires with precise length and diameter control, is investigated. A detailed parametric study resulting in a full control over the resultant nanowire morphology is provided. The parameters affecting the structure have been determined as temperature, injection rate, poly(vinylpyrrolidone):silver nitrate (PVP:AgNO3) molar ratio, sodium chloride (NaCl) amount and stirring rate. The results show that polyol process method could replace the conventional silver nanowire fabrication methods. It was shown that specific nanowire lengths and diameters for any application can be obtained simply by adjusting the parameters of the process.
210

Hydrothermal Method For Doping Of Zinc Oxide Nanowires And Fabrication Of Ultraviolet Photodetectors

Afal, Aysegul 01 July 2012 (has links) (PDF)
Nanotechnology comprises of the understanding and control of materials and processes at the nanoscale. Among various nanostructured materials, semiconducting nanowires attract much interest for their novel physical properties and potential device applications. The unique properties of these nanowires are based on their high surface to volume ratio and quantum confinement effect. Zinc oxide, having a direct, wide bandgap and large exciton binding energy, is highly appealing for optoelectronic devices. Due to excellent optical and electrical properties, zinc oxide nanowires have been utilized to fabricate various devices such as solar cells, light emitting diodes, transistors and photodetectors. Furthermore, zinc oxide, in its natural state exhibits n-type conductivity. Addition of impurities often leads to remarkable changes in their electrical and optical properties, which open up new application areas. Among the many synthesis methods for zinc oxide nanowires, hydrothermal method is an attractive one due to its easy procedure, simple equipment and low temperature requirements. In this thesis, zinc oxide nanowires were grown and doped by hydrothermal method. Different metal dopants such as copper, silver and aluminum were used for this purpose. These metals were selected as dopants due to their effect on magnetic properties, p-type conduction and electrical conductivity of ZnO nanowires, respectively. Doped nanowires were fully characterized and the changes in their physical properties were investigated. In addition, hydrothermally synthesized pure and aluminum doped zinc oxide nanowires were used as the electrically active components in ultraviolet photodetectors. Silver nanowires were utilized as transparent electrodes. Optoelectronic properties of the detectors were examined. Effect of in-situ annealing and nanowire length was investigated. Short recovery time, around 4 seconds, with a decent on/off ratio of 2600 was obtained. This design provides a simple and cost effective approach for the fabrication of high performance ultraviolet photodetectors.

Page generated in 0.0285 seconds