171 |
Development of High Gain Ultraviolet Photo Detectors Based on Zinc Oxide NanowiresMallampati, Bhargav 05 1900 (has links)
Semiconductor nanowires acts as an emerging class of materials with great potential for applications in future electronic devices. Small size, large surface to volume ratio and high carrier mobility of nanowires make them potentially useful for electronic applications with high integration density. In this thesis, the focus was on the growth of high quality ZnO nanowires, fabrication of field effect transistors and UV- photodetectros based on them. Intrinsic nanowire parameters such as carrier concentration, field effect mobility and resistivity were measured by configuring nanowires as field effect transistors. The main contribution of this thesis is the development of a high gain UV photodetector. A single ZnO nanowire functioning as a UV photodetector showed promising results with an extremely high spectral responsivity of 120 kA/W at wavelength of 370 nm. This corresponds to high photoconductive gain of 2150. To the best of our knowledge, this is the highest responsivity and gain reported so far, the previous values being responsivity=40 kA/W and gain=450. The enhanced photoconductive behavior is attributed to the presence of surface states that acts as hole traps which increase the life time of photogenerated electrons raising the photocurrent. This work provides the evidence of such solid states and preliminary results to modify the surface of ZnO nanowire is also produced.
|
172 |
In Situ Quantitative Mechanical Characterization and Integration of One Dimensional Metallic NanostructuresJanuary 2011 (has links)
One dimensional (1-D) metallic nanostructures (e.g. nanowires, nanorods) have stimulated great interest recently as important building blocks for future nanoscale electronic and electromechanical devices. In this thesis work, gold and nickel nanowires with various diameters were successfully fabricated, and two dedicated platforms, based on (1) a novel micro mechanical device (MMD) assisted with a quantitative nanoindenter and (2) a TEM-AFM sample holder system, were developed and adopted to perform in situ tensile tests inside SEM and TEM on samples with diameter ranging from a few nanometers to hundreds nanometers. Size-dependent mechanical behavior and different fracture mechanisms of gold nanowires had been revealed and discussed. In addition, we discovered cold welding phenomenon for ultrathin gold nanowires (diameter ∠ 10nm), which is anticipated to have potential applications in the future bottom-up integration of metallic 1-D nanostructures and next-generation interconnects for extremely dense logic circuits.
|
173 |
Atomistic Simulations of the Deformation and Energetics of Metal NanowiresLeach, Austin Miles 27 August 2007 (has links)
Nanowires are an exciting class of novel materials that have potential applications in areas including biological sensing, photonics, and electronics. The promise of these future applications relies on the production of nanowires of controlled size, shape, and crystal structure, in reasonable quantities, and further, ultimately requires that the nanowires be mechanically stable in the application environment. This research is aimed at understanding the mechanical behavior of metallic nanowires, through the use of atomistic simulations.
At the nanometer scale, where the surface-area-to-volume ratio is substantial, the effects of free surfaces have a primary influence on the physical properties of a material. Surface energy arises from unsatisfied bond coordination at the surface of a solid and results in a surface stress as the surface atoms contract into the bulk of the material to increase their local electron density. The magnitude of surface energy and surface stress is dependent on the orientation of the surface and the compliance of the structure. In bulk materials, the effects of surfaces are negligible; however, at the nanometer scale, surface effects become quite significant.
In metallic nanowires, these surface effects strongly influence mechanical properties, and the characteristics of plastic deformation. The mechanical testing of nanowires is precluded by the difficulties of accurately applying and measuring forces on the nanometer scale. For this reason, computational simulations are a primary tool for investigating the mechanical behavior of nanowires. In this work, we have performed atomistic simulations to examine the mechanical response of silver nanowires. We have conducted studies to determine the deformation characteristics of experimentally observed nanowire geometries subjected to tensile and bending loads. We have also developed a technique to probe the energetics of mechanical deformation, in order to elucidate the energetically favored deformation pathways in nanowires. Our results show that nanowires may be tailored for specific mechanical requirements based on geometry and free surface orientation and provide insight to the effect of free surfaces in the mechanical deformation of nanometer scale structures.
|
174 |
Transport Properties and Nanosensors of Oxide Nanowires and NanobeltsLao, Changshi 29 October 2007 (has links)
ZnO is one of the most important materials for electronics, optoelectronics, piezoelectricity and optics. With a wide band gap of 3.37eV and an exiton binding energy of 60meV, ZnO 1D nanostructures exhibit promising properties in a lot of optical device applications. It is also an important piezoelectric material and has applications in a new category of nanodevices, nano-piezotronics. Demonstrated prototype of devices includes nanogenerators, piezoelectric-FET, and a series of evolutive devices based on the concept of nanogenerator. This is based on working principle of a semiconductor and piezoelectric coupled property.
This thesis is about the growth, characterization and device fabrication of ZnO nanowires and nanobelts for sensors and UV detectors. First, the fundamental synthesis of ZnO nanostructurs is investigated, particularly polar surface dominated nanostructues, to illustrate the unique growth configurations of ZnO. Detail study in this part includes nanobelts, nanorings, nanocombs, nanonetworks, and nanodiskettes synthesis. Important factors in driving the nanostructure synthesis mechanism are analyzed, such as the chemical activities of different surface of ZnO and the polar surface dominated effects. Then, the devices fabricated methods using individual nanowires/nanobelts and their electrical transport properties were carefully characterized. In this part, dominant factors which are critical for nanobelt device performance are investigated, such as the contact properties, interface effects, and durability testing. Also, a metal doping method is studied to explore the controlling and modification of nanowire electric and optical properties. Further more, I will present the surface functionalization of nanobelt for largely improving its electrical, optoelectronic and chemical performance. Surface functionalization of nanobelts is proven to be an effective method in enhancing the semiconductor and metal contact. Piezoelectric field-effect transistors will be demonstrated as a powerful approach as chemical sensors. Finally, a technique is illustrated for functionalizing the surfaces of ZnO nanobelts for enhancing its UV sensitivity by over five orders of magnitude. This demonstrates an effective approach for fabricatiing ultrasensitive UV detectors. The research results presented in this thesis have made great contribution to the growth, device fabrication and novel applications of ZnO nanostructures for photonics, optoelectronics and sensors.
|
175 |
Thermal transport in low dimensional semiconductor nanostructuresBohorquez Ballen, Jaime 01 May 2014 (has links)
We have performed a first principles density functional theory (DFT) calculations to study the thermal conductivity in ZnO nanotubes, ZnO nanowires, and Si/Ge shell-core nanowires. We found the equilibrium configuration and the electric band structure of each nanostructure using DFT, the interatomic force constants and the phonon dispersion relations were calculated using DFPT as implemented in Quantum Espresso. In order to fundamentally understand the effect of atomic arrangements, we calculated the phonon conductance in a ballistic approach using a Green's function method. All ZnO nanostructures studied exhibit semiconducting behavior, with direct bandgap at the Gamma point. The calculated values for the bandgaps were larger than the value of the bandgap of the bulk ZnO. We were able to identify phonon modes in which the motion of Zn atoms is significant when it is compared with the motion of oxygen atoms. The thermal conductivity depends on the diameter of the nanowires and nanotubes and it is dramatically affected when the nanowire or nanotube is doped with Ga. For Si/Ge nanowires, the slope and the curvature of acoustic modes in the phonon dispersion relation increases when the diameter increases. For nanowires with the same number of atoms, the slope and curvature of acoustic modes depends on the concentration of Si atoms. We were able to identify phonon modes in which the motion of core atoms is significant when it is compared with motion of atoms on the nanowire's shell. The thermal conductivity in these nanostructures depends on the nanowire's diameter and on the Si atoms concentration.
|
176 |
Cylindrical Magnetic Nanowires Towards Three Dimensional Data StorageMohammed, Hanan 12 1900 (has links)
The past few decades have witnessed a race towards developing smaller, faster,
cheaper and ultra high capacity data storage technologies. In particular, this race
has been accelerated due to the emergence of the internet, consumer electronics,
big data, cloud based storage and computing technologies. The enormous increase
in data is paving the path to a data capacity gap wherein more data than can be
stored is generated and existing storage technologies would be unable to bridge this
data gap. A novel approach could be to shift away from current two dimensional
architectures and onto three dimensional architectures wherein data can be stored
vertically aligned on a substrate, thereby decreasing the device footprint. This thesis
explores a data storage concept based on vertically aligned cylindrical magnetic
nanowires which are promising candidates due to their low fabrication cost, lack of
moving parts as well as predicted high operational speed. In the proposed concept,
data is stored in magnetic nanowires in the form of magnetic domains or bits which
can be moved along the nanowire to write/read heads situated at the bottom/top of
the nanowire using spin polarized current.
Cylindrical nanowires generally exhibit a single magnetic domain state i.e. a
single bit, thus for these cylindrical nanowire to exhibit high density data storage, it
is crucial to pack multiple domains within a nanowire. This dissertation
demonstrates that by introducing compositional variation i.e. multiple segments
along the nanowire, using materials with differing values of magnetization such as
cobalt and nickel, it is possible to incorporate multiple domains in a nanowire. Since
the fabrication of cylindrical nanowires is a batch process, examining the properties
of a single nanowire is a challenging task. This dissertation deals with the
fabrication, characterization and manipulation of magnetic domains in individual
nanowires. The various properties of are investigated using electrical
measurements, magnetic microscopy techniques and micromagnetic simulations.
In addition to packing multiple domains in a cylindrical nanowire,
this dissertation reports the current assisted motion of domain walls along
multisegmented Co/Ni nanowires, which is a fundamental step towards achieving a
high density cylindrical nanowire-based data storage device.
|
177 |
Vapour Phase Transport Growth of One-Dimensional Zno Nanostructures and their ApplicationsSugavaneshwar, R P January 2013 (has links) (PDF)
One-dimensional (1D) nanostructures have gained tremendous attention over the last decade due to their wide range of potential applications. Particularly, ZnO 1D nanostructures have been investigated with great interest due to their versatility in synthesis with potential applications in electronics, optics, optoelectronics, sensors, photocatalysts and nanogenerators. The thesis deals with the challenges and the answer to grow ZnO 1D nanostructure by vapor phase transport (VPT) continuously without any length limitation. The conventional VPT technique has been modified for the non-catalytic growth of ultralong ZnO 1D nanostructures and branched structures in large area with controllable aspect ratio. It has been shown that the aspect ratio can be controlled both by thermodynamically (temperature) and kinetically (vapour flux). The thesis also deals with the fabrication of carbon nanotube (CNT) -ZnO based multifunctional devices and the field emission performance of ZnO nanowires by employing various strategies.
The entire thesis has been organised as follows:
Chapter 1 deals with Introduction. In this chapter, importance of ultralong nanowires and significance of ultralong ZnO nanowires has been discussed. Various efforts to grow ultralong ZnO nanowire with their advantages and disadvantages have been summarised. Lastly the significance of forming ZnO nanowires based nano hybrid structures and importance of doping in ZnO nanowires and has also been discussed.
Chapter 2 deals with experimental procedure and characterization. In this chapter, a single step VPT method for the growth of ultralong ZnO nanowires that incorporates local oxidation barrier for the source has been described. The synthesized nanowires were characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman & photoluminescence.
Chapter 3 deals with growth of ZnO nanowires, controlling the aspect ratio of ZnO nanowires, and role of other experimental aspects. In this chapter, a way to grow nanowires continuously without any apparent length limitation, a way to control the diameter of the nanowires kinetically without catalyst particle or seed layer and obtaining smaller diameter of the nanowires by non-catalytic growth as compared to that set by the thermodynamic limit has been discussed. Furthermore, the significance and importance of local oxidation barrier on source for protecting them from degradation, ensuring the continuous supply of vapour and enabling the thermodynamically and kinetically controlled growth of nanowires has been discussed. Lastly, the scheme for large area deposition and a method to use same source material for several depositions has been presented.
Chapter 4 deals with multifunctional device based on CNT -ZnO Nanowire Hybrid Architectures same device can be used as a rectifier, a transistor and a photodetector. In this chapter, the fabrication of CNT arrays-ZnO nanowires based hybrid architectures that exhibit excellent high current Schottky like behavior with p-type conductivity of ZnO has been discussed. CNT-ZnO hybrid structures that can be used as high current p-type field effect transistors (FETs) and deliver currents of the order of milliamperes has been presented.
Furthermore, the p-type nature of ZnO and possible mechanism for the rectifying characteristics of CNT-ZnO has been discussed. Lastly, the use of hybrid structures as ultraviolet detectors where the current on-off ratio and the response time can be controlled by the gate voltage has been presented and also an explanation for photoresponse behaviour has been provided.
Chapter 5 deals with the substrate-assisted doping of ZnO nanowires grown by this technique. In this chapter, the non-catalytic growth of ZnO nanowires on multiwalled carbon nanotubes (MWCNTs) and soda lime glass (SLG) with controlled aspect ratio has been presented. The elemental mapping to confirm the presence and distribution of carbon and sodium in ZnO nanowires and the transport studies on both carbon and sodium doped ZnO has also been presented. Furthermore the stability of carbon doped ZnO has also been presented. Lastly, the advantage of growing ZnO nanowires on MWCNTs and overall advantage associated with this technique has been discussed.
Chapter 6 deals with formation of ZnO nanowire branched structures. In this chapter, a possibility to grow ZnO nanowires on already grown ZnO nanowires has been demonstrated. The formation of branched structure during multiple growth of ZnO nanowire on ZnO nanowire has been presented and evolution of aspect ratio in these branched structures has been discussed. Furthermore, the advantage of using ZnO branched structures and also the ZnO nanoneedles on MWCNT mat for field emission has been presented.
Chapter 7 summarizes all the findings of the thesis.
|
178 |
The role of the catalyst in the growth of one-dimensional nanostructuresKirkham, Melanie 10 November 2009 (has links)
Quasi one-dimensional (1D) nanostructures show great promise for many applications, including in solar cells, nanogenerators and chemical sensors, due to the high surface-to-volume ratio and unique properties of nanostructures. The growth of these nanostructures is commonly catalyzed by metal nanoparticles and generally attributed to the vapor-liquid-solid (VLS) mechanism. The purpose of this research is to better understand the role of the catalyst nanoparticles in the growth of 1D nanostructures, in order to allow improved control of the synthesis process. To this end, nanostructures were grown with a variety of compositions, including Au- and Sn-catalyzed ZnO, Au-catalyzed FexOy and Au-catalyzed Si nanostructures. The morphology of the nanostructures was characterized with electron microscopy, and the crystallographic orientation with X-ray texture analysis. The catalyst particles were further characterized with both in-situ and post-growth X-ray diffraction. The types of bonding in the source material and catalyst play a significant role in the diffusion path of the source material to the growth front and in the catalyst particle state during growth. Dissimilar bonding types in the source material and catalyst prevent bulk diffusion of the source material through the catalyst, thereby preventing eutectic melting of the catalyst. These results bring new insight into the catalyzed growth of 1D nanostructures and assist in the informed choice of appropriate catalyst materials, which may aid the utilization of 1D nanostructures in energy-related and other applications.
|
179 |
Mechanical Properties and Self-Assembly of NanostructuresMandal, Taraknath January 2014 (has links) (PDF)
This thesis is devoted to the investigation of mechanical properties and self-assembly process of materials at the nanoscale. Various nanostructured materials such as nanoparticles, nanotubes, nanowires and thin films are used as constituent elements of nanodevices. Hence, knowledge of the mechanical properties of materials at the nanoscale is extremely important for understanding their functionality in nanodevices. Mechanical properties of nanostructured materials may significantly differ from those of their bulk counterparts due to the high surface to volume ratio in nanostruc-tures. We particularly focus on the role of the surface region on the stiffness of nanomaterials. We have shown that the stiffness of a nanomaterial can be tuned over a wide range by introducing appropriate coating on the nanostructure surface. We have also explored the effects of the surface region on the stability of various phases in a nanostructure.
In the second part of this thesis, we have described the self-assembly process of nanostructures mediated by drendrimers. Self-assembly techniques are frequently used to decorate nanostructures into specific networks. The motivation of this study is to investigate the mechanisms which control the effective interaction and the inter-particle distance between nanoparticle-dendrimer compos-ites. Control over the inter-particle separation is very important since it has a strong influence on the electronic and optical properties of the nanostructures. In the following paragraphs, we sum-marize the results of our study.
We start with a brief introduction to the mechanical properties and self-assembly process of nanostructures in the first chapter. A brief review of the work done on these topics in the recent past is presented in this chapter. We discuss the results and conclusions of various experimental and numerical studies on these topics. We also mention the motivation for the studies we have carried out. At the end, we briefly describe the numerical methods (molecular dynamics (MD) and density functional theory (DFT)) which have been used in our investigations.
In the second chapter, we discuss the effects of the surface region on the mechanical properties of nanostructures. We have investigated the size and growth direction dependence of the mechanical properties of ZnS nanowires and thin films as a case study. We observe that the Young’s modulus of nanowires and thin films strongly depends on their size and growth direction. This size and growth direction dependence of the stiffness of nanostructured materials can be explained in terms of their surface modifications. Since the energy of the surface region is usually higher than that of the core region in a nanostructure, the surface atoms move their positions to minimize the surface energy. As a result, bond lengths at the surface region are usually different from their bulk values. We observe that in ZnS nanowires and thin films, the average bond length at the surface region is lower than that in the core region which remains unchanged from its bulk value. This decrease in the bond length (or equivalently increase in the bond energy) increases the effective stiffness of the entire nanostructure. As the size of the nanowire/thin film increases, the effect of the surface region gradually decreases and hence the Young’s modulus value converges to the bulk value.
Since the surface region has a strong influence on the mechanical properties of nanostructures, the stiffness of a nanostructure can be tuned by modifying the surface region with other materials. In chapter three, we have shown that the stiffness of ZnS nanowires can be tuned by introducing a thin CdS shell on top of the ZnS surface. In general, the stiffness of a nanostructure can be increased (decreased) by coating the surface region with a stiffer (less stiff) material. However, the stiffness of the core/shell nanostructures strongly depends on the properties of the interface between the core and the shell. We observe that the binding energy between the core and shell regions is relatively low due to the lattice mismatch at the interface region of core/shell nanostructures. This lower binding energy strongly affects the stiffness of core/shell nanostructures. We have also shown that thermal properties such as thermal conductivity and melting temperature of core/shell structures can be tuned by changing the coating material.
In chapter four, we discuss the effects of the surface region on the stability of various phases in a nanostructure. The surface atoms may stabilize a particular phase in a nanostructure which is not a stable phase in the bulk material. In this chapter, we investigate the stability of the h-MgO phase, an intermediate structure found during the wurtzite to rock salt transformation, in CdSe nanostructures. We observe that this five-fold coordinated phase is more stable at lower temperatures and smaller sizes of the nanowires. The appearance of this phase has not been observed till now in experiments. We show that this phase is not stable for larger CdSe nanocrystals on which the experiments have been done.
In the rest of the thesis, we have presented the results of our studies of self-assembly of nanostructures mediated by DNAs and dendrimers. First we describe in chapter five the nature of the effective interaction between two PAMAM dendrimers. Dendrimers are frequently used to coat surfaces of nanoparticles to prevent the nanoparticles from aggregation. The interaction between such nanoparticle-dendrimer composites depends strongly on the nature of the effective interac-tion between dendrimers. We have used fully atomistic MD simulations to calculate the potential of mean force (PMF) between two PAMAM dendrimers. We show that the effective interaction strongly depends on the size (generation) and protonation level of the dendrimers. The PMF profiles of nonprotonated dendrimers show a global minimum which represents the attractive nature of the interaction between the dendrimers up to a certain center-to-center distance. On the other hand, the interaction between protonated dendrimers is repulsive throughout their interaction re-gion. The PMF profiles are fitted very well by a sum of an exponential and a Gaussian function. This observation is in contradiction with some of the results of existing coarse-grained simulations which predicted the effective interaction between dendrimers to be Gaussian. Our atomistic simulation which includes all the local fluctuations is expected to give more accurate results.
Information about the effective interaction between two dendrimers helps in understanding how dendrimer molecules can be used to control the interaction strength and the preferred inter-particle distance between two nanostructures. In chapter six, we discuss the effective interaction between two dendrimer grafted gold nanoparticles. We observe that dendrimer molecules can get adsorbed spontaneously on the surface of a gold nanoparticle. These grafted dendrimers significantly alter the interaction between the gold nanoparticles. We have explored the effects of proto-nation level and the density of the grafted dendrimers on the effective interaction between two gold nanoparticle-dendrimer composites. We observe that these nanoparticle-dendrimer composites at-tract each other at low grafting density. However, the interaction strength and the inter-particle distance at the minimum of the potential are much lower and higher, respectively than those between two bare gold nanoparticles. Interestingly at higher grafting density, the nature of the interaction between the nanocomposites depends on the protonation level of the grafted dendrimers. Nanoparticles grafted with nonprotonated dendrimers still attract each other but with lower inter-action strength and higher inter-particle distance compared to the values for low grafting density.
On the other hand, nanocomposites grafted with protonated dendrimers repel each other at high grafting density. Thus we show that the effective interaction and the optimal inter-particle distance between the nanostructures can be tuned over a wide range by using a suitable grafting density and protonation level of the dendrimers.
In the seventh chapter, we describe a strategy to assemble dendrimers with the help of sin-gle stranded DNA (ssDNA). We attach an ssDNA to one dendrimer and a complementary ssDNA to a second dendrimer. These two complementary ssDNAs bind with each other through base pair formation to assemble the dendrimers into a single structure. The complementary ssDNAs form a dsDNA which is rigid enough to maintain the inter-dendrimer distance almost the same as the length of the DNA. The inter-dendrimer distance can be tuned by changing the DNA length. However, this method strongly depends on the protonation level of the dendrimers. It works well only for nonprotonated dendrimers. Since the protonated dendrimers are positively charged, they strongly interact with the negatively charged ssDNAs through electrostatic interaction. As a result, ssDNAs wrap the dendrimer surface and hence the inter-dendrimer distance can not be controlled. We have also verified that this method works for multiple nonprotonated dendrimers as well.
In the final chapter of this thesis, we summarize the main results and conclude with a brief discussion of future directions of research on the problems considered in the thesis.
|
180 |
Synthesis And Electronic Properties Of Nanowires Of Charge Transfer ComplexesSai, T Phanindra 01 1900 (has links) (PDF)
In case of charge-transfer complex of TTF:TCNQ lot of work had previously been done on single crystals and thin films to study various interesting properties including phase transitions which were attributed to Peierls instability. But as seen from the review of molecular wires it is clear that apart from synthesis of TTF:TCNQ in molecular wire form, not much was known about the behavior of these wires at low temperatures. There were some open questions listed below, which we tried to address in the thesis
Can nanowires of TTF:TCNQ be grown across prefabricated electrodes which are separated by gaps < 1 μm.
Can the nanowires grown in such smaller gaps, show Peierls transition, which is the signature of quasi one dimensional conduction. As the size and length of the grown wires are small it was expected that they will have less staking disorder as compared to the thin films.
What will be conduction mechanism at low temperatures in such single/few nanowire samples.
If the nanowires show Peierls transition and CDW formation at low temperatures, can nonlinear conduction be seen due to motion of CDW, if so how well do they compare with the reported results for TTF:TCNQ single crystals.
In case of Cu:TCNQ it can be noted from the above review that even though much advances have been made on synthesizing good quality Cu:TCNQ films and incorporating them in novel device structures, there has been much controversy regarding conduction mechanism. There were many conflicting results in literature regarding switching in these devices. In this thesis work we wanted to address the feasibility of switching in Cu:TCNQ under reduced size of top electrodes and also address few other issues like
To grow Cu:TCNQ nanowires by using vapor phase evaporation method
Can resistive switching be induced in Cu:TCNQ by using a local probe STM tip (Pt-Rh) operated in high vacuum.
Since the measurement will be done in high vacuum what will be the effect of environment (absence of oxygen, water vapor) on reproducibility of resistive switching.
Will localized switching depend on the top electrode material. This has been probed by coating different metals on the C-AFM tip and using them as top electrode in conducting mode.
With what contact force will we get reproducible resistive switching.
Can a device structure be made with an array of top electrode in the form of metal dots (< 10 μm) and study switching using C-AFM.
This thesis is divided into seven main chapters and two appendix chapters, which are listed below:
In the present chapter 1, a detailed overview and literature survey of charge-transfer complexes TTF:TCNQ and Cu:TCNQ which were relevant to our present study was presented. This was followed by our motivation in undertaking the present work.
In chapter 2 the various experimental techniques developed during the course of the thesis work such as e-beam lithography, design of the vacuum chamber for deposition of organic molecules, design of ultra high vacuum scanning tunneling microscope (UHV-STM chamber along with the STM head, modification of conducting AFM for obtaining the switching data have been described.
In chapter 3 we describe the preparation of TTF:TCNQ molecular wires across prefabricated electrodes and different measurements done on the samples. In particular the observation Peierls transition in the grown nanowires of TTF:TCNQ and the nonlinear conduction mechanism involved at low temperatures will be discussed in detail.
In chapter 4 we describe the preparation of Cu:TCNQ nanowires on Cu substrate using vapor phase technique. Resistive switching measurements done on the Cu:TCNQ nanowires in high vacuum with Pt-Rh tip as top electrode will be discussed in detail.
In chapter 5 we describe the resistive switching measurements performed on Cu:TCNQ nanowires with different metal coated C-AFM tips as well as FIB deposited platinum dots as top electrodes.
In chapter 6 we make a few comments about possible switching mechanism involved, when STM tip, C-AFM induced as well as platinum coated dots were used as top electrodes.
In chapter 7 we conclude this thesis by summarizing the main results. Also we point out the scope for future work that can be based upon the results presented in this work.
In Appendix A a brief review of self assembled monolayer (SAM) of alkane thiols is presented followed by details about experiments done for insitu study of growth of SAMs of decanethiol and octadecanethiol on silver substrates using ellipsometry and force-displacement spectroscopy.
In Appendix B a brief description of work done to grow isolated nanowires of Cu:TCNQ, between two metal electrodes in planar geometry and in anodic alumina membranes is given.
|
Page generated in 0.0394 seconds