211 |
Constructions of Controllable Nanostructure Silver Wires and Microstructure Copper Oxide Donuts by a Surface-Formation TechniqueChen, Chen-Ni 15 June 2009 (has links)
In the past few years, the synthesis and fabrication of inorganic nanostructures
with manipulated morphology and size have attracted considerable attention due to
their fundamental importance and potential wide-ranging applications.
Silver nanowires are particularly interesting to study because bulk silver has
the highest electric conductivity among all metals. A number of chemical
approaches have been explored to synthesize 1D silver nanowires.
We demonstrate a simple method to synthesize silver wires by thermal
reduction of aqueous AgNO3 droplet with catalytic anatase TiO2 nanoparticles
which were spin-coated on ITO or glass.
Our simple method can be also applied to generate CuO with donut-shaped
microstructure by using ITO conducting glass as matrix. We have found that the
size and reproducibility are well-controllable. A single phase of CuO donut-shaped
microstructure with outer diameters ranging from ∼ 13 to 17 £gm and inner
diameters ranging from ∼ 1.4 to 3.3 £gm was obtained. The composition of CuO
microdonut was confirmed by thin-film XRD and XPS analyses.
|
212 |
Porous silicon nanoneedles for intracellular delivery of small interfering RNAChiappini Dottore, Ciro 25 June 2012 (has links)
The rational and directed delivery of genetic material to the cell is a formidable tool to investigate the phenotypic effects of gene expression regulation and a promising therapeutic strategy for genetic defects. RNA interference constitutes a versatile approach to gene silencing. Despite the development of numerous strategies the transfection of small interfering RNA (siRNA) is highly dependent on cell type and conditions. Direct physical access to the intracellular compartment is a promising path for high efficiency delivery independently of cell type and conditions. Silicon nanowires grant such access with minimal toxic effects, and allow intracellular delivery of DNA when actuated by atomic force microscope. These findings reveal the potential for porous silicon nanostructures to serve as delivery vectors for nucleic acids due to their porous nature, elevated biocompatibility, and biodegradability.
This dissertation illustrates the development a novel platform for efficient siRNA transfection based on an array of porous silicon nanoneedles. The synthesis of biodegradable and biocompatible porous nanowires was accomplished by a novel strategy for electroless etch of silicon that allows anisotropic etch simultaneously with porosification. An ordered array of cone shaped porous silicon nanoneedles with tunable tip size, array density and aspect ratio was obtained coupling this strategy with patterned metal deposition and selective reactive ion etch. This process also granted control over porosity, nanopore size and flexural modulus. The combination of these parameters was appropriately optimized to ensure cell penetration, maximize siRNA loading and minimize cytotoxic effects. Loading of the negatively charged siRNA molecules was optimized by applying an external electric field to the nanoneedles under appropriate voltage conditions to obtain a tenfold increase over open circuit loading, and efficient penetration of the siRNA within the porous volume of the needles. Alternative surface chemistry modification provided a means for effective siRNA loading and sustained release. siRNA transfection was achieved by either imprinting the nanoneedles array chip over a culture of MDA-MB-231 cells or allowing the cells to self-impale over the needles. The procedures allowed the needles to penetrate across the cell membrane without influencing cell proliferation. siRNA was successfully transfected and was effective at suppressing gene expression. / text
|
213 |
Nanostructured materials for solar energy conversionHoang, Son Thanh 11 November 2013 (has links)
The energy requirements of our planet will continue to grow with increasing world population and the modernization of currently underdeveloped countries. This will force us to search for environmental friendly alternative energy resources. Solar energy by far provides the largest of all renewable energy resources with an average power of 120 000 TW irradiated from the sun which can be exploited through solar electricity, solar fuel, and biomass. Nanostructured materials have been the subject of extensive research as the building block for construction of solar energy conversion devices for the past decades. The nanostructured materials sometimes have peculiar electrical and optical properties that are often shape and size dependent and are not expected in the bulk phase. Recent research has focused on new strategies to control nanostructured morphologies and compositions of semiconductor materials to optimize their solar conversion efficiency. In this dissertation, we discuss the synthesis and characterizations of one dimensional nanostructured TiO₂ based materials and their solar energy conversion applications. We have developed a solvothermal synthesis method for growing densely packed, vertical, single crystalline TiO₂ rutile nanowire arrays with unprecedented small feature sizes of 5 nm and lengths up to 4.4 [mu]m. Because of TiO₂'s large band gap, the working spectrum of TiO₂ is limited to the ultra violet region with photons shorter than 420 nm. We demonstrate that the active spectrum of TiO₂ can be shifted to ~ 520 nm with incorporation of N via nitridation of TiO₂ nanowires in NH₃ flow. In addition, we demonstrate a synergistic effect involving hydrogenation and nitridation cotreatment of TiO₂ nanowires that further redshift the active spectrum of TiO₂ to 570 nm. The Ta and N co-incorporated TiO₂ nanowires were also prepared and showed significant enhancement in photoelectrochemical performance compared to mono-incorporation of Ta or N. This enhancement is due to fewer recombination centers from charge compensation effects and suppression of the formation of an amorphous layer on the nanowires during the nitridation process. Finally, we have developed hydrothermal synthesis of single crystalline TiO₂ nanoplatelet arrays on virtually all substrates and demonstrated their applications in water photo-oxidation and dye sensitized solar cells. / text
|
214 |
Thermoelectric and structural characterization of individual nanowires and patterned thin filmsMavrokefalos, Anastassios Andreas 06 December 2013 (has links)
This dissertation presents the development of methods based on microfabricated devices for combined structure and thermoelectric characterizations of individual nanowire and thin film materials. These nanostructured materials are being investigated for improving the thermoelectric figure of merit defined as ZT=S²[sigma]T/K, where S is the Seebeck coefficient, [sigma] is the electrical conductivity, K is the thermal conductivity, and T is the absolute temperature. The objective of the work presented in this dissertation is to address the challenges in the measurements of all the three intrinsic thermoelectric properties on the same individual nanowire sample or along the in plane direction of a thin film, and in correlating the measured properties with the crystal structure of the same nanowire or thin film sample. This objective is accomplished by the development of a four-probe thermoelectric measurement procedure based on a micro-device to measure the intrinsic K, [sigma], and S of the same nanowire or thin film and eliminate the contact thermal and electrical resistances from the measured properties. Additionally the device has an etched through hole that facilitates the structural characterization of the sample using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). This measurement method is employed to characterize individual electrodeposited Bi[subscript 1-x]Te[subscript x] nanowires. A method based on annealing the nanowire sample in a forming gas is demonstrated for making electrical contact between the nanowire and the underlying electrodes. The measurement results show that the thermoelectric propertied of the nanowires are sensitive to the crystal quality and impurity doping concentration. The highest ZT found in three nanowires is about 0.3, which is still lower than that of bulk single crystals at the optimum carrier concentration. The lower ZT found in the nanowires is attributed to the high impurity or carrier concentration and defects in the nanowires. The micro-device is further modified to extend its use to characterization of the in-plane thermoelectric properties of thin films. Existing practice for thermoelectric characterization of thin films is obtaining K in the cross plane direction using techniques such as the 3[omega] method or time domain laser thermal reflectance technique whereas the [sigma] and S are usually obtained in the in-plane direction. However, transport properties of nanostructured thin films can be highly anisotropic, making this combination of measurements along different directions unsuitable for obtaining the actual ZT value. Here, the micro-device is used to measure all three thermoelectric properties in the in-plane direction, thus obtaining the in-plane ZT. A procedure based on a nano-manipulator is developed to assemble etched thin film segments on the micro-device. Measurement results of two different types of thin films are presented in this dissertation. The first type is mis-oriented, layered thin films grown by the Modulated Elemental Reactant Technique (MERT). Three different structures of such thin films are characterized, namely WSe₂, W[subscript x](WSe₂)[subscript y] and (PbSe₀.₉₉)[subscript x](WSe₂)[subscript x] superlattice films. All three structures exhibit in-plane K values much higher than their cross-plane K values, with an increased anisotropy compared to bulk single crystals for the case of the WSe₂ film. The increased anisotropy is attributed to the in-plane ordered, cross-plane disordered nature of the mis-oriented, layered structure. While the WSe₂ film is semi-insulating and the W[subscript x](WSe₂)[subscript y] films are metallic, the (PbSe₀.₉₉)[subscript x](WSe₂)[subscript x] films are semiconducting with its power factor (S²[sigma]) greatly improved upon annealing in a Se vapor environment. The second type of thin films is semiconducting InGaAlAs films with and without embedded metallic ErAs nanoparticles. These nanoparticles are used to filter out low energy electrons with the introduction of Schottky barriers so as to increase the power factor and scatter long to mid range phonons and thus suppress K. The in-plane measurements show that both the S and [sigma] increase with increasing temperature because of the electron filtering effect. The films with the nanoparticles exhibited an increase in [sigma] by three orders of magnitude and a decrease in S by only fifty percent compared to the films without, suggesting that the nanoparticles act as dopants within the film. On the other hand, the measured in-plane K shows little difference between the films with and without nanoparticles. This finding is different from those based on published cross-plane thermal conductivity results. / text
|
215 |
Semiconductor nanowires : from a nanoscale system to a macroscopic materialHolmberg, Vincent Carl 03 March 2014 (has links)
Semiconductor nanowires are one-dimensional nanoscale systems that exhibit many unique properties. Their nanoscale size can lead to defect densities and impurity populations different than bulk materials, resulting in altered diffusion behavior and mechanical properties. Synthetic methods now support the large-scale production of semiconductor nanowires, enabling a new class of materials and devices that use macroscopic quantities of nanowires. These advances have created an opportunity to fabricate bulk structures which exhibit the unique physical properties of semiconductor nanowires, bridging the properties of a nanoscale system with macroscopic materials.
High aspect ratio germanium nanowires were synthesized in supercritical organic solvents using colloidal gold nanocrystal seeds. The nanowires were chemically passivated inside the reactor system using in situ thermal hydrogermylation and thiolation. The chemical stability of the passivated nanowires was studied by exposure to highly corrosive and oxidative environments. Chemical surface functionalization of germanium nanowires was investigated by covalently tethering carboxylic acid groups to the surface, as a general platform for the further functionalization of nanowire surfaces with molecules such as polyethylene glycol. Surface functionalization with dopant-containing molecules was also explored as a potential route for doping nanowires. In addition, static charging was exploited in the development of an electrostatic deposition method for semiconductor nanowires.
In situ transmission electron microscopy experiments were conducted on gold-seeded germanium nanowires encapsulated within a volume-restricting carbon shell. A depressed eutectic melting temperature was observed, along with strong capillary effects, and the solid-state diffusion of gold into the crystalline stem of the germanium nanowire, occurring at rates orders of magnitude slower than in the bulk. Copper, nickel, and gold diffusion in silicon nanowires were also investigated. The rate of gold diffusion was
found to be a strong function of the amount of gold available to the system.
Finally, germanium nanowires were found to exhibit exceptional mechanical properties, with bending strengths approaching that of an ideal, defect-free, perfect crystal, and strength-to-weight ratios greater than either Kevlar or carbon fiber. Macroscopic quantities of nanowires were used to fabricate large sheets of free-standing semiconductor nanowire fabric, and the physical, morphological, and optical properties of the material were investigated. / text
|
216 |
Thermal and thermoelectric transport measurements of one-dimensional nanostructuresZhou, Jianhua 28 August 2008 (has links)
Not available / text
|
217 |
Nanowire Architectures for Next-Generation Solar Cells and Photonic DevicesKempa, Thomas Jan January 2012 (has links)
This thesis presents the design and synthesis of nanowires (NW) with targeted and tunable optical properties. Moreover, we show how single and assembled NW devices can enable new photovoltaic (PV) and photonic platforms. Beginning with an investigation of axially modulated p-i-n junction NWs, we established several fundamental parameters dictating solar cell performance at the nanoscale and demonstratred the first series integration of multiple solar cells on a single NW. Thereafter, implementation of the first silicon NW photovoltaic device with radially modulated p-n junctions showed that power conversion efficiencies of 3-4% are attainable from a nanoscale architecture, exceeding efficiencies for many organic and hybrid organic-inorganic solar cells. Despite these achievements, the poor electrical characteristics and insufficient control over absorption properties characterizing the aforementioned devices would limit the promise of silicon NWs for next generation solar cells. We overcome these limitations with a class of polymorphic core/multi-shell silicon NWs with highly-crystalline hexagonally-faceted shells and embedded coaxial p/i/n junctions. NW PV devices 200-300 nm in diameter exhibit open-circuit voltages of 0.5 V and fill-factors of 73% under one-sun solar illumination. Single-NW wavelength-dependent photocurrent measurements agree quantitatively with FDTD simulations. Synthetic manipulation of NW size and morphology drives tuning of optical resonances such that optimized structures can yield current densities double those for films of comparable thickness. Further optimized NW devices achieve current densities of 17 mA/cm2 and power conversion efficiencies of 6%. We also present steps toward rational assembly of larger-scale NW PV arrays. Parallel integration of NWs preserves PV metrics while assembly of vertically-stacked NWs yields current densities of \(25 mA/cm^2\) and projected efficiencies of ~15% for \(1 \mu m\) thick assemblies. Finally, we present the first ever NW material possessing 3 degrees of structural freedom, thus expanding the NW "structome." Such NWs were achieved through the first demonstration of facet selective growth of silicon and germanium in the gas phase. Photonic devices based on this new material present intriguing optical properties, including selective attenuation, enhancement, and wavelength tunability of resonant cavity modes. / Chemistry and Chemical Biology
|
218 |
High performance germanium nanowire field-effect transistors and tunneling field-effect transistorsNah, Junghyo, 1978- 07 February 2011 (has links)
The scaling of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) has continued for over four decades, providing device performance gains and considerable economic benefits. However, continuing this scaling trend is being impeded by the increase in dissipated power. Considering the exponential increase of the number of transistors per unit area in high speed processors, the power dissipation has now become the major challenge for device scaling, and has led to tremendous research activity to mitigate this issue, and thereby extend device scaling limits. In such efforts, non-planar device structures, high mobility channel materials, and devices operating under different physics have been extensively investigated. Non-planar device geometries reduce short-channel effects by enhancing the electrostatic control over the channel. The devices using high mobility channel materials such as germanium (Ge), SiGe, and III-V can outperform Si MOSFETs in terms of switching speed. Tunneling field-effect transistors use interband tunneling of carriers rather than thermal emission, and can potentially realize low power devices by achieving subthreshold swings below the thermal limit of 60 mV/dec at room temperature. In this work, we examine two device options which can potentially provide high switching speed combined with reduced power, namely germanium nanowire (NW) field-effect transistors (FETs) and tunneling field-effect transistors (TFETs). The devices use germanium (Ge) – silicon-germanium (Si[subscript x]Ge[subscript 1-x]) core-shell nanowires (NWs) as channel material for the realization of the devices, synthesized using a 'bottom-up' growth process. The device design and material choice are motivated by enhanced electrostatic control in the cylindrical geometry, high hole mobility, and lower bandgap by comparison to Si. We employ low energy ion implantation of boron and phosphorous to realize highly doped contact regions, which in turn provide efficient carrier injection. Our Ge-Si[subscript x]Ge[subscript 1-x] core-shell NW FETs and NW TFETs were fabricated using a conventional CMOS process and their electrical properties were systematically characterized. In addition, TCAD (Technology computer-aided design) simulation is also employed for the analysis of the devices. / text
|
219 |
Raman spectra of graphite, carbon nanotubes, silicon nanowires and amorphous carbonPiscanec, Stefano January 2006 (has links)
No description available.
|
220 |
Revisiting Nitride Semiconductors: Epilayers, p-Type Doping and NanowiresKendrick, Chito Edsel January 2008 (has links)
This dissertation investigates the growth of high quality GaN and InN thin films by plasma assisted molecular beam epitaxy (PAMBE). It also explores the growth of self-seeded GaN branching nanowires and p-type doping of InN, two topics of particular interest at present.
The growth of high quality III-Nitride semiconductor thin films have been shown to be dependent on the group-III (metal) to nitrogen ratio. A metal-rich growth environment enhances the diffusion of the group-III adatoms through the formation of a group-III adlayer. By using a metal-rich growth environment, determined by growth rate studies using laser reflection interferometry or RHEED analysis of the surface, both GaN and InN films have been grown with a smooth surface morphology. Additionally the smooth surface morphology has beneficial effects on the electrical and optical properties of both materials. However, with the growth using a metal-rich environment, group-III droplets are present on all film surfaces, which can be an issue for device fabrication, as they produce facets in the crystal structure due to enhanced growth rates.
MBE growth of GaN nanowires via the vapour liquid solid (VLS) and vapour solid (VS) growth techniques have so far been based on the N-rich growth regime. However, we have shown that the Ga-rich growth regime can be used to grow self-seeded one dimensional and hierarchical GaN nanowires. 7 µm long hierarchical GaN nanowires with at least three branches were grown and shown to have a high crystalline quality. The suggested growth mechanism is a self-seeding VLS process driven by liquid phase epitaxy at the nanoscale, while the branching growth was nucleated due to the Ga-rich growth regime by excess Ga droplets forming on the trunk during growth. The growth of vertical GaN nanowires has also been achieved using the same self-seeding process and the critical parameter seems to be the Ga to N ratio. Also, the growth rate of the Ga-rich grown GaN nanowires can supersede the growth rates reported from N-rich grown GaN nanowires by at least a factor of two.
The fabrication of vertical and planar GaN nanowire devices has been demonstrated in this study. Two point and three point contacts were fabricated to the branching GaN nanowires in the planar direction with resistive measurements ranging from 200 - 900 kΩ, similar to chemical vapour deposition and MBE grown GaN nanowires. The nonlinear current-voltage characteristics from the three point contacts may lead to unique nano-devices. The planar nanowires have also shown to have potential as UV detectors. Schottky diodes were fabricated on the vertical nanowires, with values for the barrier heights consistent with bulk diodes.
Mg and Zn doping studies of InN were also performed. Both InN:Mg and InN:Zn have strong photoluminescence only at low doping concentrations. However, the InN:Mg films have reduced mobilities with increased Mg content, whereas the mobility determined from the InN:Zn films is independent of Zn. When the InN:Zn film quality was improved by growing under the In-rich growth regime, electrochemical capacitance-voltage results suggest n{type conductivity, and strong photoluminescence was obtained from all of the films with four features seen at 0.719 eV, 0.668 eV, 0.602 eV and 0.547 eV. The features at 0.719 eV and 0.668 eV are possibly due to a near band edge to valence band or shallow acceptor transition, while the 0.547 eV has an activation energy of 60 meV suggesting a deep level acceptor.
|
Page generated in 0.4951 seconds