141 |
Domains and functionality in multiferroic BiFeO3 filmsWaterfield Price, Noah January 2017 (has links)
For over half a century, the technological promise of spins manipulable by a small voltage has captivated the interest of experimental and theoretical researchers alike. However, if thin-film multiferroics are to be incorporated into future data storage devices, a much greater understanding of their behaviour and how they differ from their bulk counterparts is required. In this thesis, we probe the fundamental multiferroic properties of BiFeO<sub>3</sub> films through a combination of state-of-the-art diffraction and microscopy techniques. We investigate the coupling between magnetic, ferroelectric, and structural order, with a focus on domains, and how the domain structure may be manipulated in order to tailor the multiferroic properties of the material. Using non-resonant magnetic x-ray scattering (NXMS) and neutron diffraction, we study the magnetic and structural properties of (111)<sub>pc</sub>-oriented BiFeO<sub>3</sub> films. Contrary to the general belief that to they grow as a rhombohedral monodomain, we find that they comprise a sub-micron texture of monoclinic domains. The magnetic structure is found to be intimately coupled to the structure, resulting in the propagation vector being locked to the monoclinic b-axis. This magnetoelastic coupling opens up a route to strain-engineer the magnetic domains via epitaxial strain. By growing BiFeO<sub>3</sub> films on a lower-symmetry, TbScO<sub>3</sub> substrate, we are able to engineer a magnetic, structural and ferroelectric monodomain, coherent over the entire film, constituting an increase in the domain size by over five orders of magnitude. We directly demonstrate the coupling between ferroelectric and magnetic order parameters of the cycloidal magnetic structure. Using NXMS polarimetry to measure directly the magnetic polarity, we show that upon switching the ferroelectric polarisation, the magnetic polarity switches accordingly---a major rearrangement of the magnetic structure, with each spin rotating by 90 degrees on average. This goes counter to idea that magnetic and ferroelectric order parameters are only weakly coupled in type-I multiferroics. Finally, using photoemission electron microscopy we are able to directly image the sub-micron magnetostructural domain structure. We further show that there is a strong interfacial coupling between the magnetostructural domains of BiFeO<sub>3</sub> with a ferromagnetic overlayer. The BiFeO<sub>3</sub> domains are found to impose a uniaxial anisotropy in the overlayer, opening up a route to control ferromagnetic domains.
|
142 |
Matériaux magnétocaloriques pour la réfrigération magnétique à température ambiante / Magnetocaloric materials for magnetic refrigeration at room temperatureHai, Xueying 24 November 2016 (has links)
La réfrigération magnétique, basée sur l'effet magnétocalorique (EMC), est une alternative intéressante aux méthodes de réfrigération traditionnelles, basées sur des cycles de compression/détente, car elle présente des rendements énergétiques nettement plus élevés et permet d'éviter l'utilisation de gaz nocifs contribuant à l'effet de serre et problématiques pour l'environnement. Cette technologie s'appuie sur l’EMC géant de certains matériaux magnétiques autour de la température ambiante. Cet effet permet d'augmenter ou de diminuer la température du matériau lors de son aimantation ou désaimantation adiabatique autour de sa température de transition magnétique.La majeure partie des travaux de thèse se focalise sur la famille des matériaux de type La(Fe,Si)13 dans lesquels un effet magnétocalorique géant a été mis en évidence et pour lesquels la faisabilité industrielle semble la plus favorable. Dans un premier temps, les propriétés structurales et magnétiques de ces alliages sont explorées et optimisées, en remplaçant aussi bien la terre rare que le métal de transition par d'autres éléments. Les méthodes d’élaboration, des traitements thermiques, ainsi que le contrôle de la stœchiométrie sont guidées par les caractérisations structurales, microstructurales, physiques (thermiques et magnétiques).D’autre part, l'effet de l'insertion d'éléments interstitiels légers est également étudié et une grande partie du travail porte sur la détermination des conditions de stabilité de ces interstitiels dans les matériaux. Grâce à l'extension des distances Fe-Fe, la température de Curie de la phase magnétocalorique peut être augmentée jusqu'à des plages proches de latempérature ambiante. L'influence d’une faible concentration en carbone sur les propriétés magnétiques des échantillons est examinée avant hydrogénation et la teneur en carbone est optimisée.Afin d'étudier la diffusion des éléments interstitiels, la cinétique de sorption d'hydrogène est étudiée par la méthode de Sieverts ainsi que par diffraction neutronique. La diffraction neutronique in situ et à haute résolution permet une localisation des atomes interstitiels et donne accès au schéma d’insertion. Cette étude permet de préciser l’effet de l’insertion d’interstitiels légers et des substitutions d’éléments de terre rare sur la structure des alliages métalliques complexes de type La-Fe-Si. Nous montrons que la dépression ou l’accélération de la cinétique d'hydrogénation peut être liée à la variation hétérogène particulière de la maille et des liaisons dans la structure de type NaZn13. Un mécanisme pour le chemin de diffusion est suggéré.Le mécanisme d'insertion d'atomes légers est non seulement fortement lié à l'espace disponible, mais aussi associés à la facilité du chemin de diffusion dans le réseau. Nous démontrons avec des résultats expérimentaux qu'une addition modérée de carbone dans la phase La(Fe,Si)13 avant l'hydrogénation peut effectivement ralentir la cinétique d'insertion de l'hydrogène. Dans les phases La-Ce-Fe-Si, une insertion de carbone peut aider à retenir les atomes d'hydrogène lors de la désorption, par conséquent, offre une possibilité d'avoir une meilleure stabilité des matériaux hydrogénés pour des applications à long terme. La stabilité des matériaux hydrogénés est mesurée par DSC et une amélioration de la stabilité thermique du matériau est réalisée par un dopage au carbone.Un volet exploratoire est consacré aux alliages Fe-Cr-Ni et Fe-Cr-Mn qui pourraient potentiellement avoir un effet magnétocalorique exploitable. Les transitions magnétiques et structurales de ces alliages de compositions différentes sont étudiées et leur potentiel d'application magnétocalorique est discuté. / The magnetocaloric effect (MCE) is characterized by a magnetic entropy change and an adiabatic temperature change. The NaZn13-type La(Fe,Si)13 system has attracted wide interest because of its first-order ferromagnetic phase transition with a large magnetocaloric effect. The transition temperature can be flexibly adjusted through substitution or interstitial insertion. Particularly, hydrogen interstitials can adapt the temperature range to room-temperature applications. Precise adjustment can be achieved by full hydrogen absorption then partial desorption. However, fully hydrogenated alloys are unstable upon heating. It is important to have a better understanding of its hydrogen stability to optimize its application potential.In the first part, the structural, magnetic, and magnetocaloric properties of La(Fe,Si)13 phases are studied. In particular, we have investigated the effect of substitution of Ce on the La site and Mn on the Fe sites. The partial substitution of Ce results in the decrease of TC with decreasing lattice constant. At the same time, Ce substitution for La results in a reduced volume of the octahedral interstitial site due to steric effect. The interstitial insertion is impeded by Ce partial substitution.Secondly, the effects of interstitial atoms such as hydrogen and carbon are examined. These elements are able to enter the interstitial voids in the La(Fe,Si)13 phase, expanding the lattice. Through the extension of Fe-Fe distances, the Curie temperature of the magnetocaloric phase can be raised up to room temperature range. The influence of small concentration of carbon on the magnetic properties of samples is examined prior to hydrogenation and carbon content is optimized. In order to investigate the interstitial dynamics, the hydrogen sorption kinetics is studied by the means of Sieverts’ volumetric method and neutron diffraction. Particular attention has been given to the adjustment of the structure in the course of hydrogen/deuterium interstitial absorption and desorption.Steady-state and in-situ neutron diffractions provide precise information of the interstitial atom location of the sequential filling of the accommodating sites. The structural investigation allows specifying the deformations undergone in the complex metallic alloys La-Fe-Si when subjected to light interstitial insertion or rare earth substitution at the cation site. We show that the depression or enhancement of the hydrogenation kinetics may be related to the particular inhomogeneous cell variation of bonding in the structure. A mechanism for the diffusion path is suggested.The mechanism is light atom insertion into the interstitial sites is not only strongly related to the available space for accommodation, but also associated with the facility of the diffusion path in the lattice. We demonstrate with experimental results that a modest addition of carbon in the La-Fe-Si phase prior to hydrogenation can effectively slow down the hydrogen insertion kinetics. In Ce-substituted La-Ce-Fe-Si phases, carbon insertion can help retain hydrogen atoms during desorption, therefore, offering a prospect to have improved stability of hydrogenated materials for long-term applications. The hydrogen stability of the material is examined by means of thermal desorption in DSC and an enhancement of the thermal stability of the material is achieved with carbon-doping.Lastly, in the search of new rare-earth-free materials for magnetocaloric applications, we have explored the capacity of alloys of types FeCrNi and FeCrMn. The magnetic and structural transitions of these alloys of different compositions are studied and their potential for magnetocaloric application is examined in this thesis.
|
143 |
Structure and properties of some triangular lattice materialsDownie, Lewis James January 2014 (has links)
This thesis is concerned with the study of two families of materials which contain magnetically frustrated triangular lattices. Each material is concerned with a different use; the first, analogues of YMnO₃, is from a family of materials called multiferroics, the second, A₂MCu₃F₁₂ (where A = Rb¹⁺, Cs¹⁺, M = Zr⁴⁺, Sn⁴⁺, Ti⁴⁺, Hf⁴⁺), are materials which are of interest due to their potentially unusual magnetic properties deriving from a highly frustrated Cu²⁺-based kagome lattice. YFeO₃, YbFeO₃ and InFeO₃ have been synthesised as their hexagonal polymorphs. YFeO₃ and YbFeO₃ have been studied in depth by neutron powder diffraction, A.C. impedance spectroscopy, Mössbauer spectroscopy and magnetometry. It was found that YFeO₃ and YbFeO₃ are structurally similar to hexagonal YMnO₃ but there is evidence for a subtle phase separation in each case. Low temperature magnetic properties are also reported, and subtle correlations between the structural, electrical and magnetic properties of these materials have been found. InFeO₃ was found to adopt a higher symmetry and is structurally similar to the high temperature phase of YMnO₃. TbInO₃ and DyInO₃ have also been synthesised and studied at various temperatures. The phase behaviour of TbInO₃ was analysed in detail using neutron powder diffraction and internal structural changes versus temperature were mapped out – there is also evidence for a subtle isosymmetric phase transition. Neither DyInO₃ nor TbInO₃ show long-range magnetic order between 2 and 300 K, or any signs of ferroelectricity at room temperature. The new compounds Cs₂TiCu₃F₁₂ and Rb₂TiCu₃F₁₂ have both been synthesised and shown to be novel kagome lattice based materials. The former shows a transition from rhombohedral to monoclinic symmetry in the powder form and from rhombohedral to a larger rhombohedral unit cell in the single crystal – a particle size based transition pathway is suggested. For Rb₂TiCu₃F₁₂ a complex triclinic unit cell is found, which distorts with lowering temperature. Both materials show magnetic transitions with lowering temperature. The solid solution Cs₂₋ₓRbₓSnCu₃F₁₂ (x = 0, 0.5, 1.0, 1.5, 2.0) was synthesised and investigated crystallographically, demonstrating a range of behaviours. Rb₂SnCu₃F₁₂ displays a rare re-entrant structural phase transition. In contrast, Cs₀.₅Rb₁.₅SnCu₃F₁₂ shows only the first transition found in the Rb⁺ end member. CsRbSnCu₃F₁₂ adopts a lower symmetry at both room temperature and below. Cs₁.₅Rb₀.₅SnCu₃F₁₂ and Cs₂SnCu₃F₁₂ show a rhombohedral - monoclinic transition, which is similar to that found in Cs₂TiCu₃F₁₂.
|
144 |
Estudo de distorção de barras cilíndricas de aço ABNT 1045 em uma rota de fabricação envolvendo trefilação combinada e têmpera por induçãoNunes, Rafael Menezes January 2012 (has links)
As distorções de forma de componentes mecânicos, que ocorrem durante a fabricação, constituem um sério problema enfrentado pela indústria metal-mecânica. Neste trabalho, avaliou-se uma rota de fabricação de barras de aço ABNT 1045 envolvendo os processos de trefilação, alívio de tensões e têmpera por indução utilizando-se uma visão holística do processo. Após um estudo detalhado, variou-se 5 parâmetros do processo, sendo eles: corrida, ângulo de fieira, ângulo de endireitamento, temperatura de alívio de tensões e profundidade de camada temperada. Caracterizou-se as tensões residuais, em todas as etapas do processo, utilizando-se as técnicas de difração de raios-X, difração de nêutrons e difração de radiação Síncrotron, bem como, a microestrutura do material. Após as etapas de trefilação combinada e tratamento térmico avaliou-se as distorções de forma, utilizando-se um equipamento de medição por coordenadas e posteriormente calculou-se os vetores distorção. Os dados obtidos foram analisados utilizando-se o software Minitab® através da montagem de uma matriz DoE (Design of Experiments). A partir dos resultados obtidos, avaliou-se quais etapas do processo induzem maior "potencial de distorção" nos componentes. A partir das medições de tensões residuais foi obtida uma visão detalhada de como estas tensões residuais se distribuem no material após cada etapa do processo, os dados mostram diferenças significativas ao longo das posições periféricas nas etapas de pré-endireitamento e trefilação. Dados apontam que a distribuição da zona de segregação é responsável pelo comportamento diferente nas duas corridas analisadas em relação às distorções. As tensões residuais geradas no endireitamento do fio-máquina são responsáveis por causar heterogeneidades no material e induzem um alto “potencial de distorção”. Nos parâmetros de processo estudados as deformações induzidas no processo de trefilação não foram capazes de eliminar as distribuições heterogêneas de tensões residuais geradas no pré-endireitamento, porém utilizando-se o ângulo de fieira de 15º houve uma diminuição da distorção após a têmpera por indução. Após o processo de endireitamento por rolos cruzados (PERC) a distribuição das tensões residuais na superfície é mais homogênea para os ângulos de ferramenta avaliados neste trabalho (16º e 18º), entretanto existem diferenças significativas na distribuição de tensões residuais no núcleo do material, e estas diferenças são umas das causadoras das distorções após o processo de têmpera por indução. / Shape distortions are a serious problem in the metalworking industry, distortion due to heat treatment is responsible for additional and cost machining operations. Minimizing or even avoiding heat treatment distortion is one of the key factors to minimize production costs. In the past, investigations had focused on single effects or isolated parameters steps in a manufacturing chain. It is well established now that each step of the process chain generates a “distortion potential” and a new global approach, treating distortion as a system attribute, analyzing the entire manufacturing chain from steelmaking to heat treatment process is necessary. The main idea of distortion engineering is that all steps of the manufacturing chain together contribute to the final distortion behavior. In this work, a steel route of combined cold-drawing process to induction hardening of ABNT 1045 steel bars was investigated. The residual stresses characterizations were carried out using X-ray diffraction, neutron diffraction and synchrotron diffraction methods. The identification and interaction between factors on distortion behavior was carried out using statistical analysis, with the aid of DoE (Design of Experiments). For the DoE method the number of causes that can be considered were 5 parameters of the process, including: different batches, drawing angle, PERC angle, stress relief temperature and induction hardening depth. From the results obtained, the evaluation of which steps in the process induce higher "distortion potential" during the various steps of the process was carried out. From the measurements of residual stresses a detailed view of how these residual stresses are distributed for material in each step of the process was obtained, the results show significant differences along the peripheral positions in the pre-straightening and drawing stages. The experimental results indicate the microstructure of the material, wire rod geometry and the die angle process parameters as main "distortion potentials".
|
145 |
Ferroelectricity in empty tetragonal tungsten bronzesGardner, Jonathan January 2017 (has links)
In this work, in-depth structural and electrical characterisation is used to study a family of “empty” tetragonal tungsten bronzes (TTBs), A2₄A1₂B1₂B2₈O₃₀. An initial investigation into the effect of the A1-cation size on the properties of empty Ba₄R₀.₆₇◻₁.₃₃Nb₁₀O₃₀ TTBs (where R is the A1-cation and R = La, Nd, Sm, Gd, Dy and Y; ◻ = vacancy) was performed. These were determined to be metrically tetragonal by powder x-ray diffraction, with decreasing R cation size inducing increased crystal anisotropy. This tetragonal structural distortion, driven by contraction in the ab-plane, is shown to stabilise c-axis ferroelectricity; a direct correlation between tetragonality and the ferroelectric Curie temperature, T[sub]C, is demonstrated. Further examination of the relaxor ferroelectric (RFE) to ferroelectric (FE) crossover in Ba₄(La₁₋ₓNdₓ)₀.₆₇◻₁.₃₃Nb₁₀O₃₀ TTBs using detailed structural studies employing variable temperature, high resolution neutron, synchrotron X-ray and electron diffraction revealed a common superstructure with 2√2 × √2 × 2 cell with respect to the basic tetragonal aristotype cell. However, they display different degrees of order/disorder which can disrupt polar order (ferroelectricity). La-rich analogues exhibit a disordered regime between the low and high temperature ferroelectric and non-polar phases. Although polar, this disordered regime is non-ferroelectric, however, large polarisation may be established with an applied electric field, but relaxes back to the disordered phase upon removal of the field. Substitution of Nd for La at the A1-site leads to destabilisation of the disordered phase and reintroduces “normal” ferroelectric behaviour. Finally, isovalent substitution of Sr²⁺∙ for Ba²⁺ is shown to lead to the development of relaxor behaviour at higher dopant concentrations in Ba₄₋ₓSrₓDy₀.₆₇◻₁.₃₃Nb₁₀O₃₀, (x = 0, 0.25, 0.5, 1, 2, 3; ◻ = vacancy). With increasing x the unit cell contracts in both the ab- plane and c-axis coinciding with a decrease in T[sub]C and development of relaxor behaviour for x ≥ 2. This observation is rationalised by differing cation occupancies: for x ≤ 1, Sr²⁺ principally occupies the A2-site while for x ≥ 2 significant Sr²⁺ occupation of the A1-site leads to the observed RFE characteristics. The FE to RFE crossover is discussed in the context of a previously proposed TTB crystal chemical framework with the A1-site tolerance factor identified as the dominant influence on relaxor behaviour.
|
146 |
Etude des mécanismes de diffusion de l’oxygène dans SrFeO3-x et Pr2NiO4+d, réalisée par diffraction du rayonnement synchrotron in situ sur monocristal / Exploring oxygen diffusion mechanisms in SrFeO3-x and Pr2NiO4+d, followed up on single crystals by in situ synchrotron diffractionMaity, Avishek 26 September 2016 (has links)
La compréhension des aspects fondamentaux de la diffusion de l'oxygène dans les oxydes solides à des températures modérées, jusqu'à température ambiante, est un enjeu majeur pour le développement d'une variété de dispositifs technologiques dans un avenir proche. Cela concerne, par exemple, le développement de la prochaine génération des électrolytes et membranes solides d'oxygène pour les piles à combustible de type SOFC. Autrement, les réactions d'intercalation de l'oxygène réalisées à basse température présentent un outil puissant pour contrôler le dopage en oxygène ainsi que des propriétés physiques. Dans ce contexte, les oxydes ayant une structure type brownmillérite (A2BB'O5) ou type K2NiF4, ont attiré beaucoup d'attention, car ils montrent une mobilité de l'oxygène déjà à température ambiante.Dans cette thèse, nous avons étudié les mécanismes d'intercalation d'oxygène dans SrFeO2.5+x, ainsi que Pr2NiO4+x par des méthodes de diffraction in situ, réalisées sur des monocristaux dans une cellule électrochimique spécifiquement conçue, explorant principalement le rayonnement synchrotron. Ceci a permis d’explorer en 3D tout le réseau réciproque, et d'obtenir des informations précieuses sur la diffusion diffuse, sur les faibles intensités des raies de surstructure, ainsi que des informations sur la fraction volumique des différents domaines de maclage au cours de la réaction, impossibles à accéder par diffraction de poudre.Les deux systèmes montrent des changements structuraux complexes, accompagnés par une mise en ordre de l'oxygène à longue portée. Au cours de l'intercalation d'oxygène nous avons mis en évidence deux phases intermédiaires, SrFeO2.75 et SrFeO2.875, possédant des lacunes en oxygène ordonnées à longue échelle. En raison du maclage, avec jusqu'à douze possibles individus, nous avons suivi directement la formation et l'évolution des domaines de maclage ainsi que leur micro-structure apparentée. Nous avons ainsi observé un mécanisme de réaction topotactique pour SrFeO2.5 vers SrFeO2.75, tandis que l'oxydation de SrFeO2.75 conduit à des importants réarrangements de l’oxygène, associés à un changement de nombre de domaines de maclage. La réduction électrochimique de la phase orthorhombique Pr2NiO4.25 donne Pr2NiO4.0 comme produit final, ayant la même symétrie, tandis que la phase tétragonale Pr2NiO~4.12 apparaît comme phase intermédiaire. Utilisant un monocristal avec un diamètre de 50 microns, la réaction se déroule dans des conditions d'équilibre dans moins que 24 heures, ce qui implique un coefficient de diffusion de l’oxygène anormalement élevé, supérieur à 10-^11cm2*s-1 à température ambiante. Nous avons également étudié le diagramme de phase de Pr2NiO4.25 sur monocristal jusqu’à 1100°C en chauffant sous air. Une série complexe de transition de phases a été mise en évidence, la vraie symétrie de Pr2NiO4.25 s’avérée en fait monoclinique.Outre l'exploration des diagrammes de phases complexes de SrFeO2.5+x et Pr2NiO4+d, nous avons pu étudier les changements détaillés concernant la micro-structure à l'aide de diffraction sur monocristaux in situ, impossible à accéder par des méthodes de diffraction de poudre classique. Les changements de la micro-structure des domaines va bien au-delà des composés étudiés ici et porte une grande importance pour extrapoler sur la performance, la stabilité et la durée de vie par exemple des matériaux utilisés pour le stockage de l’énergie. / Understanding fundamental aspects of oxygen diffusion in solid oxides at moderate temperatures, down to ambient, is an important issue for the development of a variety of technological devices in the near future. This concerns e.g. the progress and invention of next generation solid oxygen ion electrolytes and oxygen electrodes for solid oxide fuel cells (SOFC) as well as membrane based air separators, oxygen sensors and catalytic converters to transform e.g. NOx or CO from exhaust emissions into N2 and CO2. On the other hand oxygen intercalation reactions carried out at low temperatures present a powerful tool to control hole doping, i.e. the oxygen stoichiometry, in electronically correlated transition metal oxides. In this aspect oxides with Brownmillerite (A2BB’O5) and K2NiF4-type frameworks, have attracted much attention, as they surprisingly show oxygen mobility down to ambient temperature. In this thesis we investigated oxygen intercalation mechanisms in SrFeO2.5+x as well as Pr2NiO4+x by in situ diffraction methods, carried out on single crystals in especially designed electrochemical cell, mainly exploring synchrotron radiation. Following up oxygen intercalation reactions on single crystals is challenging, as it allows to scan the whole reciprocal lattice, enabling to obtain valuable information as diffuse scattering, weak superstructure reflections, as well as information of the volume fraction of different domains during the reaction, to highlight a few examples, difficult or impossible to access by powder diffraction. Both title systems are able to take up an important amount of oxygen on regular and interstitial lattice sites, inducing structural changes accompanied by long range oxygen ordering. For SrFeO2.5+x the uptake of oxygen carried out by electrochemical oxidation yields SrFeO3 as the final reaction product. The as grown SrFeO2.5 single crystals we found to show a complex defect structure, related to the stacking disorder of the octahedral and tetrahedral layers. During the oxygen intercalation we evidenced the formation of two reaction intermediates, SrFeO2.75 and SrFeO2.875, showing complex and instantly formed long range oxygen vacancies. Due to the specific twinning with up to totally twelve possible twin individuals, we directly follow up the formation and changes of the specific domain and related micro-structure. We thus observed a topotactic reaction mechanism from SrFeO2.5 to SrFeO2.75, while further oxidation lead to important rearrangements in the dimensionality of the oxygen defects in SrFeO2.75, implying the formation of an additional twin domain in course of the reaction. The electrochemical reduction of orthorhombic Pr2NiO4.25 yields stoichiometric Pr2NiO4.0 as the final reaction product with the same symmetry, while tetragonal Pr2NiO~4.12 appears as a non-stoichiometric intermediate phase. Using a single crystal with 50µm diameter, the reaction proceeded under equilibrium conditions in slightly less than 24h, implying an unusually high oxygen ion diffusion coefficient of > 10^-11cm2*s-1 at already ambient temperature. From the changes of the associated twin domain structure during the reduction reaction, the formation of macro twin domains was evidenced. Heating up Pr2NiO4.25 single crystals in air revealed a complex series of phase transition, evidencing the true symmetry of the starting phase to be in fact monoclinic. Beside exploring the complex phase diagrams of SrFeO2.5+x and Pr2NiO4+d we were able to investigate detailed changes in the micro-structure using in situ single crystal diffraction techniques, impossible to access by classical powder diffraction methods. The importance of changes in the domain structure goes far beyond the investigated title compounds and has utmost importance of the performance, stability and lifetime of e.g. battery materials.
|
147 |
Estudo de distorção de barras cilíndricas de aço ABNT 1045 em uma rota de fabricação envolvendo trefilação combinada e têmpera por induçãoNunes, Rafael Menezes January 2012 (has links)
As distorções de forma de componentes mecânicos, que ocorrem durante a fabricação, constituem um sério problema enfrentado pela indústria metal-mecânica. Neste trabalho, avaliou-se uma rota de fabricação de barras de aço ABNT 1045 envolvendo os processos de trefilação, alívio de tensões e têmpera por indução utilizando-se uma visão holística do processo. Após um estudo detalhado, variou-se 5 parâmetros do processo, sendo eles: corrida, ângulo de fieira, ângulo de endireitamento, temperatura de alívio de tensões e profundidade de camada temperada. Caracterizou-se as tensões residuais, em todas as etapas do processo, utilizando-se as técnicas de difração de raios-X, difração de nêutrons e difração de radiação Síncrotron, bem como, a microestrutura do material. Após as etapas de trefilação combinada e tratamento térmico avaliou-se as distorções de forma, utilizando-se um equipamento de medição por coordenadas e posteriormente calculou-se os vetores distorção. Os dados obtidos foram analisados utilizando-se o software Minitab® através da montagem de uma matriz DoE (Design of Experiments). A partir dos resultados obtidos, avaliou-se quais etapas do processo induzem maior "potencial de distorção" nos componentes. A partir das medições de tensões residuais foi obtida uma visão detalhada de como estas tensões residuais se distribuem no material após cada etapa do processo, os dados mostram diferenças significativas ao longo das posições periféricas nas etapas de pré-endireitamento e trefilação. Dados apontam que a distribuição da zona de segregação é responsável pelo comportamento diferente nas duas corridas analisadas em relação às distorções. As tensões residuais geradas no endireitamento do fio-máquina são responsáveis por causar heterogeneidades no material e induzem um alto “potencial de distorção”. Nos parâmetros de processo estudados as deformações induzidas no processo de trefilação não foram capazes de eliminar as distribuições heterogêneas de tensões residuais geradas no pré-endireitamento, porém utilizando-se o ângulo de fieira de 15º houve uma diminuição da distorção após a têmpera por indução. Após o processo de endireitamento por rolos cruzados (PERC) a distribuição das tensões residuais na superfície é mais homogênea para os ângulos de ferramenta avaliados neste trabalho (16º e 18º), entretanto existem diferenças significativas na distribuição de tensões residuais no núcleo do material, e estas diferenças são umas das causadoras das distorções após o processo de têmpera por indução. / Shape distortions are a serious problem in the metalworking industry, distortion due to heat treatment is responsible for additional and cost machining operations. Minimizing or even avoiding heat treatment distortion is one of the key factors to minimize production costs. In the past, investigations had focused on single effects or isolated parameters steps in a manufacturing chain. It is well established now that each step of the process chain generates a “distortion potential” and a new global approach, treating distortion as a system attribute, analyzing the entire manufacturing chain from steelmaking to heat treatment process is necessary. The main idea of distortion engineering is that all steps of the manufacturing chain together contribute to the final distortion behavior. In this work, a steel route of combined cold-drawing process to induction hardening of ABNT 1045 steel bars was investigated. The residual stresses characterizations were carried out using X-ray diffraction, neutron diffraction and synchrotron diffraction methods. The identification and interaction between factors on distortion behavior was carried out using statistical analysis, with the aid of DoE (Design of Experiments). For the DoE method the number of causes that can be considered were 5 parameters of the process, including: different batches, drawing angle, PERC angle, stress relief temperature and induction hardening depth. From the results obtained, the evaluation of which steps in the process induce higher "distortion potential" during the various steps of the process was carried out. From the measurements of residual stresses a detailed view of how these residual stresses are distributed for material in each step of the process was obtained, the results show significant differences along the peripheral positions in the pre-straightening and drawing stages. The experimental results indicate the microstructure of the material, wire rod geometry and the die angle process parameters as main "distortion potentials".
|
148 |
Estudo de distorção de barras cilíndricas de aço ABNT 1045 em uma rota de fabricação envolvendo trefilação combinada e têmpera por induçãoNunes, Rafael Menezes January 2012 (has links)
As distorções de forma de componentes mecânicos, que ocorrem durante a fabricação, constituem um sério problema enfrentado pela indústria metal-mecânica. Neste trabalho, avaliou-se uma rota de fabricação de barras de aço ABNT 1045 envolvendo os processos de trefilação, alívio de tensões e têmpera por indução utilizando-se uma visão holística do processo. Após um estudo detalhado, variou-se 5 parâmetros do processo, sendo eles: corrida, ângulo de fieira, ângulo de endireitamento, temperatura de alívio de tensões e profundidade de camada temperada. Caracterizou-se as tensões residuais, em todas as etapas do processo, utilizando-se as técnicas de difração de raios-X, difração de nêutrons e difração de radiação Síncrotron, bem como, a microestrutura do material. Após as etapas de trefilação combinada e tratamento térmico avaliou-se as distorções de forma, utilizando-se um equipamento de medição por coordenadas e posteriormente calculou-se os vetores distorção. Os dados obtidos foram analisados utilizando-se o software Minitab® através da montagem de uma matriz DoE (Design of Experiments). A partir dos resultados obtidos, avaliou-se quais etapas do processo induzem maior "potencial de distorção" nos componentes. A partir das medições de tensões residuais foi obtida uma visão detalhada de como estas tensões residuais se distribuem no material após cada etapa do processo, os dados mostram diferenças significativas ao longo das posições periféricas nas etapas de pré-endireitamento e trefilação. Dados apontam que a distribuição da zona de segregação é responsável pelo comportamento diferente nas duas corridas analisadas em relação às distorções. As tensões residuais geradas no endireitamento do fio-máquina são responsáveis por causar heterogeneidades no material e induzem um alto “potencial de distorção”. Nos parâmetros de processo estudados as deformações induzidas no processo de trefilação não foram capazes de eliminar as distribuições heterogêneas de tensões residuais geradas no pré-endireitamento, porém utilizando-se o ângulo de fieira de 15º houve uma diminuição da distorção após a têmpera por indução. Após o processo de endireitamento por rolos cruzados (PERC) a distribuição das tensões residuais na superfície é mais homogênea para os ângulos de ferramenta avaliados neste trabalho (16º e 18º), entretanto existem diferenças significativas na distribuição de tensões residuais no núcleo do material, e estas diferenças são umas das causadoras das distorções após o processo de têmpera por indução. / Shape distortions are a serious problem in the metalworking industry, distortion due to heat treatment is responsible for additional and cost machining operations. Minimizing or even avoiding heat treatment distortion is one of the key factors to minimize production costs. In the past, investigations had focused on single effects or isolated parameters steps in a manufacturing chain. It is well established now that each step of the process chain generates a “distortion potential” and a new global approach, treating distortion as a system attribute, analyzing the entire manufacturing chain from steelmaking to heat treatment process is necessary. The main idea of distortion engineering is that all steps of the manufacturing chain together contribute to the final distortion behavior. In this work, a steel route of combined cold-drawing process to induction hardening of ABNT 1045 steel bars was investigated. The residual stresses characterizations were carried out using X-ray diffraction, neutron diffraction and synchrotron diffraction methods. The identification and interaction between factors on distortion behavior was carried out using statistical analysis, with the aid of DoE (Design of Experiments). For the DoE method the number of causes that can be considered were 5 parameters of the process, including: different batches, drawing angle, PERC angle, stress relief temperature and induction hardening depth. From the results obtained, the evaluation of which steps in the process induce higher "distortion potential" during the various steps of the process was carried out. From the measurements of residual stresses a detailed view of how these residual stresses are distributed for material in each step of the process was obtained, the results show significant differences along the peripheral positions in the pre-straightening and drawing stages. The experimental results indicate the microstructure of the material, wire rod geometry and the die angle process parameters as main "distortion potentials".
|
149 |
Étude de la stabilité, de l’occupation des cages et de la sélectivité moléculaire des hydrates de gaz par spectroscopie Raman / Investigations of stability, guest partitioning and molecular selectivity of gas hydrates by Raman spectroscopyPétuya-Poublan, Claire 04 October 2017 (has links)
Les hydrates de gaz sont des cristaux composés de molécules d’eau formant des cages, piégeant des molécules de gaz. A l’état naturel, ces hydrates se forment en présence de mélanges gazeux dans les fonds océaniques et seraient impliqués dans la formation des comètes et des planètes. Comprendre la sélectivité moléculaire et la stabilité des hydrates mixtes (co-incluant plusieurs espèces gazeuses) est primordiale et constitue le coeur de ce travail de doctorat. En s’appuyant sur la spectroscopie Raman et la diffraction des neutrons, complétés de calculs de chimie quantique, les hydrates formés à partir de mélanges de CO, N2 et de CO2 ont été étudiés.Outre leur intérêt astrophysique, ces systèmes permettent d’appréhender l’impact de propriétés physico-chimiques (moment dipolaire,solubilité, adsorption sur la glace) sur la sélectivité.La cinétique de formation et les signatures vibrationnelles des molécules encapsulées dans différents types de cages ontété analysées pour la première fois dans les hydrates purs de CO et de N2. En variant pression et température, une capacité exceptionnelle de diffusion des molécules gazeuses à travers les cages est révélée. La sélectivité moléculaire, la stabilité structurale et l’occupation des cages ont été étudiées dans les hydrates mixtes CO-N2, CO-CO2 et CO2-N2.L’affinité aqueuse et le moment dipolaire des molécules gazeuses pilotent la sélectivité des gaz piégés (encapsulation préférentielle du CO et du CO2). De plus, l’azote joue un rôle de promoteur cinétique des structures formées. Ces résultats fondamentaux ouvrent de nouvelles perspectives tant appliquées (séparation des gaz) que fondamentales (hydrates en milieu naturel). / Gas hydrates are crystalline compounds consisting of water molecules forming cages within which gas molecules are encapsulated. In natural environments, gas hydrates are formed in the presence of gaseous mixtures in the ocean floor and would be involved in the formation of comets and planets. Understanding the molecular selectivity and the stability of mixed hydrates (co-including several gaseous species) is crucial and constitutes the core of this research work. With the help of Raman spectroscopy and neutron diffraction,supplemented by quantum chemistry calculations, hydrates formed from mixtures of CO, N2 and CO2 have been investigated. In addition to their astrophysical interest, these systems offer the opportunity to better understand the impact of physical-chemistry properties (dipolar moment, water solubility,adsorption on ice) on the selectivity.The formation kinetics and the vibrational signatures of the encapsulated molecules in various types of cage have been analyzed in pure CO and N2 hydrates for the first time. By varying pressure and temperature, the gaseous molecules exhibit an exceptional ability for diffusing through the cages. Molecular selectivity, structural stability and cage occupancy have been studied in the mixed hydrates CO-N2, CO-CO2 and CO2-N2. The aqueous affinity and the dipolar moment of the gas molecules trigger the selectivity of the trapped gases (preferential encapsulation of COand CO2). In addition, the nitrogen molecule acts as a kinetic promoter of the formed structure. These fundamental results open new opportunities on both applied (gas separation)and fundamental (hydrates in natural environment) aspects.
|
150 |
The influence of second phases on the microstructural evolution and the mechanical properties of geological materialsTant, Joseph January 2015 (has links)
Polycrystalline geological materials are not normally single phase materials and commonly contain second phases which are known to influence the grain size and mechanical properties of bulk material. Despite the well documented significance of second phases, there are relatively few detailed systematic experimental studies of the effect of second phases on isostatic high temperature grain growth in geological materials. Grain growth is a process that is fundamental to our understanding of how rocks behave in the lower crust / upper mantle where grain size is considered to play an important role in the localization of deformation in addition to determining the strength of materials at these pressure and temperature conditions. Furthermore, the effect that the spatial distribution and grain size of the second phases have on the mechanical properties of rocks is generally acknowledged, but it is not well constrained. Spatial variation is particularly significant in geological systems where a strength contrast exists between phases. With these two things in mind, a two-part study is presented in which the influence of a pore second phase on the microstructural evolution of halite during grain growth (Part I), and the influence of a calcite second phase on the mechanical behaviour of two phase calcite + halite aggregates (Part II), is investigated. In Part I, high temperature (330 °-600 °C), high confining pressure (200 MPa) isostatic grain growth experiments were carried out on 38-125 μm reagent grade halite (99.5%+ NaCl) powder over durations of 10 secs up to 108 days. After hot-pressing, the halite displays a foam texture. Some porosity remained along the grain boundaries, the size and distribution of which appears to impact significantly on the resulting grain size, growth mechanism and kinetics of halite grain growth. Halite grain growth was found to be well described by the normal grain growth equation: d^(1/n)-d0^(1/n)=k0(t-t0)exp(-H/RT) where t is the duration of the growth period, t0 is the time at which normal growth begins, d is the grain size, d0 is the grain size at t0, k0 is a constant, H is the activation enthalpy for the growth controlling process, R is the universal gas constant,T is temperature and n is a growth constant. At 330 °-511 °C, the data is best described by n = 0.25 indicating growth controlled by surface diffusion around pores that lie on the grain boundaries. An activation enthalpy of 122±34 kJ/mol was obtained using the grain size data from these data sets. At 600 °C the data is best described by n = 0.5, suggesting that a transition to interface controlled growth takes place between 511 °C and 600 °C. To investigate the impact of porosity, the Zener parameter (Z = pore size/pore volume fraction) was determined for individual grains in 10 samples. A general trend of increasing with increasing halite grain size is observed, indicating pore elimination keeps pace with pore accumulation in the growing grains. In some samples, the largest grains display a decrease in the Zener parameter corresponding with an increase in pore volume fraction. These grains are interpreted as having experienced a short-lived, abnormal growth phase shortly after t0 during which pore accumulation outpaced pore elimination. A model of pore controlled grain growth is proposed with a view to explaining these observations. In Part II, calcite + halite aggregates of constant volume fraction (0.60 calcite : 0.40 halite) and varying calcite clast size (6 μm 361 μm) were axially deformed to <1% bulk strain at room temperature in a neutron diffraction beamline. Elastic strain and stress in each phase was determined as a function of load from the neutron diffraction data. The strain (and stress) behaviour correlates well with the microstructural parameters: 1) halite mean free path and 2) calcite contiguity. Both phases behaved elastically up to aggregate axial stresses of 20-37 MPa, above these stresses the halite yielded plastically while the calcite remained elastic. Once yielding began, the rate of enhanced load transfer from halite to calcite with increasing applied load decreased with halite mean free path and increased calcite with contiguity. A Hall-Petch relationship between halite mean free path and aggregate yield stress was observed.
|
Page generated in 0.0236 seconds