• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 5
  • 4
  • 3
  • 3
  • Tagged with
  • 78
  • 30
  • 29
  • 26
  • 23
  • 20
  • 18
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Understanding of coupled physicochemical and mineralogical mechanisms controlling soil carbon storage and preservation

Pitumpe Arachchige, Pavithra Sajeewani January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Ganga M. Hettiarachchi / Soil carbon (C) sequestration has been recognized as one of the most effective potential mitigation options for climate change. Underlying mechanisms of soil C sequestration/preservation is poorly understood, even after decades of soil C research. The main research objectives of this dissertation were three-fold: (1) enhancing our understanding in mineralogical and physicochemical mechanisms of soil C sequestration in microaggregates, (2) understanding the chemistry of organic C sequestered in soil aggregates, and (3) to determine the resilience of C to different temperature-moisture regimes and physical disturbance in a six-month incubation. An integrated approach was used in obtaining a better picture on mechanisms of C preservation. Two long-term agroecosystems located at the North Agronomy Farm, Manhattan, KS (Mollisols) and the Center of Experimentation and Research Fundacep in Cruz Alta-RS, Brazil (Oxisols) were used. Main plots of both systems were till and no-till. Mollisols consisted of three fertilizer treatments; control, manure/compost and urea. Oxisols had three different crop rotations; simple, intermediate, and complex. Submicron level information gathered by spectromicroscopy approaches, identified the direct preservation of OC structures with the original morphology; suggesting that the preservation of OC is a primary mechanism of C sequestration in these soils. Physical protection and organo-mineral associations seemed to also be involved in OC preservation. Manure/compost addition and no-till favored labile C preservation in aggregates of Mollisols. Significant associations observed between reactive minerals and C pools in Mollisols indicated the significance of organo-mineral associations in OC preservation. Large microaggregates exerted strong C preservation through physical protection and organo-mineral associations. Unlike in Mollisols, Oxisols showed a poor correlation between reactive mineral fraction and organic C which indicated the significance of physical protection over organo-mineral associations. Resilience of sequestred C was significantly affected by temperature across both temperate and tropical soil ecosystems, directly and indirectly. High temperature influenced soil acidity and reactive minerals, ultimately affecting organo-mineral associations. Macromolecular propeties of humic acid fraction showed changes after six months. Overall, direct and indirect evidence from this study suggested that the preservation of SOC is an ecosystem property supporting the newly proposed theories in soil C dynamics.
12

Investigation of Intermolecular Interaction in Organic Thin Films by means of NEXAFS Spectroscopy / Untersuchung der Intermolekularen Wechselwirkung in Organischen Dünnschichten mittels NEXAFS Spektroskopie

Holch, Florian January 2009 (has links) (PDF)
The present work reports on the electron–vibron coupling in large organic molecules and particularly on the intermolecular interaction in molecular condensates. The optical and electrical properties of these organic systems are in the focus of attention due to their crucial importance for the development of (hybrid) organic electronic devices. In particular, the charge transport mechanism and hence the interaction between condensed molecules is a matter of debate [1–4]. In order to shed light on this interaction, the spectroscopic signatures of isolated molecules in the gas phase and their condensed counterparts have been studied. The applied technique, near–edge x–ray absorption fine structure (NEXAFS) spectroscopy, is a local probe with high chemical selectivity, well suited for the investigation of the electronic structure of molecular valence levels [5]. In the experimental part, the experimental set–up developed in this work is described with special attention to the characteristic issues of gas phase measurements, energy calibration and the subsequent data evaluation. The high quality gas phase and solid state NEXAFS spectra are analysed with respect to energy positions, shape and intensity of the sharp pi*–resonances characteristic for these aromatic molecules. Where applicable, a detailed Franck–Condon (FC) analysis of the vibronic fine structure has been performed, yielding additional information on the changes that occur upon solid state formation. Together with former results on vibrational features in large organic molecules, this information has been used to investigate the correlation of vibrational energies in the ground and electronically excited state. We find a relatively good agreement with other empirical studies on vibronic structures in photoelectron spectroscopy (PES) spectra of small molecules [6]. The molecular compounds investigated are in general believed to interact via weak van–der–Waals forces only. The present results however reveal distinct differences between the spectra of the gas and solid phase that can not be explained within the context of a mere interaction by dispersive forces. In detail, differential red–shifts of 0.1 to 0.3eV of transitions assigned to the aromatic system have been observed in the C–K spectra of benzene–tetracarboxylic acid dianhydride (BTCDA), 1,4,5,8–naphthalene–tetracarboxylic acid dianhydride (NTCDA), and 3,4,9,10–perylene–tetracarboxylic acid dianhydride (PTCDA) upon solid state formation. From BTCDA to PTCDA the shift increases, indicating an improving intermolecular interaction with molecular size or a closer molecular packing. In contrast, all transitions assigned to the anhydride carbon atom (C1) do not show any shift. For the O–K spectra, small changes in relative intensity have been observed for BTCDA and NTCDA. In case of PTCDA, a blue–shift of up to 0.2eV is evident for the OB 1sLEMO+1 transition. Theoretical models for the intermolecular interaction have been proposed in this work, based on a change of molecular geometry and interaction of adjacent molecules in the ground and excited state, respectively. While an interaction of adjacent molecular orbitals may explain the experimental findings for one particular molecule, this model falls short for a comprehensive explanation of all three dianhydrides. For an interaction in the excited state, the excitonic coupling with the neighbours attached at an angle, quantum chemical calculations yield no significant change in peak positions for NTCDA. Unfortunately, results for the stacked neighbours as well as the larger compound PTCDA are still lacking. For tris (8–quinolinol) aluminum (Alq3), the observed peak–shifts are restricted to just one unoccupied orbital, the LEMO+2, which is mainly localised at the phenoxide side of the quinolinol ligands. Although the shifts differ for the individual edges, the main interaction can therefore be assigned to this orbital. In summary, NEXAFS spectroscopy, if performed with great care in terms of experimental details and data analysis especially for the gas phase data, provides very detailed and highly interesting data on the changes of the electronic structure of organic molecules upon condensation. The present data can be applied as a reference for further experimental and (highly desired) theoretical investigations, which are needed for a comprehensive understanding of the complex interaction mechanisms between organic molecules. / Die vorliegende Arbeit beschäftigt sich mit der Kopplung vibronischer und elektronischer Anregungen in großen organischen Molekülen. Die Mechanismen des Ladungstransportes und damit auch die zu Grunde liegende Wechselwirkung dieser Moleküle im Festkörper sind immer noch Gegenstand aktueller Diskussionen [1–4]. Mit der Untersuchung der spektroskopischen Eigenschaften von einerseits freien, also gasförmigen Molekülen, andererseits von (stark) wechselwirkenden Molekülen im Festkörper soll mit der vorliegenden Arbeit ein Beitrag zum besseren Verständnis der intermolekularen Wechselwirkung geleistet werden. Als Methode wurde die Röntgen–Nahkanten–Spektroskopie (NEXAFS) angewandt, die durch ihre chemische Selektivität lokale Informationen über die elektronische Struktur der Valenzzustände der untersuchten organischen Moleküle liefern kann [5]. Im experimentellen Teil wird eine Apparatur zur Untersuchung der organischen Moleküle in der Gasphase, die im Rahmen dieser Arbeit entwickelt wurde, vorgestellt. Das Hauptaugenmerk liegt dabei auf den Besonderheiten der Gasphasenmessungen sowie der Energiekalibrierung und anschließenden Datenauswertung. Die qualitativ hochwertigen Spektren werden nach Gesichtspunkten der energieposition, Form und Intensität der für die organischen Moleküle typischer Weise sehr scharfen pi* Resonanzen ausgewertet. Für Spektren mit gut aufgelöster Feinstruktur wurde die darunter liegende Schwingungsstruktur mit Hilfe einer Franck–Condon Auswertung untersucht, woraus sich weitere Informationen über die Einflüsse im Festkörper gewinnen ließen. Die dabei gesammelten Daten wurden zusammen mit den Ergebnissen früherer Untersuchungen der Schwingungsfeinstruktur organischer Moleküle herangezogen, um den Zusammenhang zwischen den Schwingungsenergien im elektronisch angeregten und im Grundzustand zu bestimmen. Dabei ergab sich eine gute Übereinstimmung mit empirischen Untersuchungen der Schwingungsstruktur kleiner Moleküle anhand von Photoelektronenspektroskopie (PES) [6]. Die vorliegenden Ergebnisse zeigen ausgeprägte Unterschiede in den Spektren der verschiedenen Phasen, die sichnicht im Rahmen einer Wechselwirkung durch rein dispersive Kräfte erklären lassen. Im Einzelnen traten zwischen den Gasphasen– und Festkörperspektren der C–K Kanten von 1,2,4,5–Benzoltetracarbonsäuredianhydrid BTCDA, 1,4,5,8–Naphthalintetracarbonsäuredianhydrid NTCDA und 3,4,9,10–Perylentetracarbonsäuredianhydrid PTCDA Rotverschiebungen von 0,1 bis 0,3eV auf. Die entsprechenden elektronischen Übergänge sind jeweils dem aromatischen System zugeordnet und zeigen in der Reihe von BTCDA zu PTCDA eine zunehmende Verschiebung. Dies deutet auf eine verstärkte Wechselwirkung bei größeren Molekülen, beziehungsweise bei einer dichteren Packung hin. Übergänge die dem Anhydrid Kohlenstoff (C1) zugeordnet sind, zeigen jedoch keinerlei Verschiebung. Die Spektren der O–K Kanten von BTCDA und NTCDA weisen lediglich eine leichte Veränderung der relativen Intensitäten auf. Im Falle von PTCDA wurde eine Blauverschiebung von bis zu 0,2eV für den OB 1s LEMO+1 Übergang beobachtet. In dieser Arbeit werden einige theoretische Modelle vorgeschlagen, die auf einer Änderung der Molekülgeometrie bzw. einer Wechselwirkung der Molekülorbitale sowohl im Grund– als auch im angeregten Zustand basieren. Betrachtet man lediglich eine einzelne Molekülsorte, so liefert z.B. eine Wechselwirkung der Orbitale benachbarter Moleküle eine zufriedenstellende Erklärung für die beobachteten Änderungen. Bei einer umfassenden Betrachtung aller Moleküle der Dianhydrid Gruppe scheitert dieses Modell jedoch. Erste quantenchemische Berechnungen der Wechselwirkung mittels einer exzitonischen Kopplung der NTCDA Moleküle mit ihren gewinkelten Nachbarn lieferten keine nennenswerten Verschiebungen der Resonanzenergien. Weiterführende Rechnungen dieser Art stehen jedoch für die gestapelten Nachbarn sowie für das größere PTCDA noch aus. Bei dem Molekül Tris(8-chinolinol)aluminium Alq3 lassen sich alle beobachteten Verschiebungen einem Orbital, dem LEMO+2 zuordnen. Obwohl die Verschiebungen für die verschiedenen Absorptionskanten unterschiedlich sind, lässt sich die Wechselwirkung des Moleküls somit diesem Orbital, das an der Phenolat Seite des Liganden lokalisiert ist, zuordnen. Zusammenfassend lässt sich sagen, dass die Röntgen–Nahkanten Spektroskopie hochinteressante und sehr genaue Informationen über die Änderung der elektronischen Struktur organischer Moleküle beim Übergang in die kondensierte Phase liefern kann. Die Ergebnisse dieser Arbeit können als eine Referenz für zukünftige experimentelle und theoretische Untersuchungen betrachtet werden. Für ein umfassendes Verständnis der komplexen Wechselwirkung zwischen organischen Molekülen sind diese weiteren Untersuchungen unabdingbar.
13

Electronic Many-Body Effects in organic Thin-Films and Interfaces / Elektronische Vielteilcheneffekte in dünnen organischen Filmen und an organischen Grenzflächen

Häming, Marc January 2010 (has links) (PDF)
The results of this thesis contribute to the understanding of the electronic properties of organic thin-films and interfaces. It is demonstrated that photoemission spectroscopy is very useful for studying surfaces and interfaces. Additionally it is shown, that many-body effects can be relevant for organic thin films, in particular at interfaces with strong interaction. These effects can have general implications for the material properties. In the first part of this thesis a systematic series of polyacene molecules is investigated with NEXAFS spectroscopy. The comparison of the data with core level and IPES data indicates that core excitations and core excitons need to be understood as many-body excitations. This finding implies for example that a high exciton binding energy is not necessarily associated with strong localization of the excited electron at the hole. As these effects apply also for valence excitons they can be relevant for the separation of charges and for the electron-hole recombination at interfaces. In the next chapter some fundamental effects in organic multilayer films and at organic-metal interfaces are studied with core level and NEXAFS spectroscopy. In this context a series of selected molecules is investigated, namely BTCDA, BTCDI, PTCDA and PTCDI. It is shown that in case of strong interface interaction a density of adsorbate-substrate states is formed which can lead to significant charge transfer satellites in the PES and NEXAFS spectra, similar to what is known for transition metal compounds. Moreover, it is demonstrated that the data can be modeled qualitatively by a basic approach which fuses the single impurity Anderson model with the description of charge transfer satellites by Sawatzky et al. This approach, which is equivalent to that of Gunnarsson and Schönhammer, allows even a relatively simple semi-quantitative analysis of the experimental data. The comparison of different adsorbate layers indicates that these many-body effects are particularly strong in case of partial occupation of the LUMO derived DOS. In the third part an organic multilayer film (SnPc), an organic-metal interface with strong coupling (SnPc/Ag) and an organic-organic interface (SnPc/PTCDA/Ag) are studied exemplarily with resonant Auger spectroscopy. The comparison of the data gives evidence for the contribution of many-body effects to the autoionization spectra. Furthermore, it is found that the electron-vibration coupling and the substrate-adsorbate charge transfer occurs on the time scale of the core hole life time. Moreover, the interaction at the organic-organic interface is weak, comparable to the intermolecular interaction in the multilayer films, despite a considerable rigid level shift for the SnPc layer. Furthermore, weak but significant electron-electron correlation is found for the molecular frontier orbitals, which are important for the substrate-adsorbate charge transfer. Therefore, these strongly coupled adsorbate films are briefly discussed within the context of the Hubbard model in the last part of this thesis. From the data derived in this work it can be estimated that such monolayer films are in the regime of medium correlations. Consequently one can expect for these adsorbate films properties which are related to the extraordinary behavior of strongly correlated materials, for which Mott metal-insulator transitions, sophisticated magnetic properties and superconductivity can be observed. Additionally some results from the investigation of alkyl/Si self-assembled monolayers are briefly discussed in the appendix. It is demonstrated exemplarily for the alkyl chains that the electronic band structure of short, finitely repeating units can be well modeled by a comparatively simple quantum well approach. In principle this approach can also be applied to higher dimensional systems, which makes it very useful for the description of E(k) relations in the regime of repeating units of intermediate length. Furthermore, the photoelectron and NEXAFS spectra indicate strong interaction at the alkyl/Si interface. It was found that the interface states can be modified by moderate x-ray irradiation, which changes the properties for charge transport through the SAM. / Die Ergebnisse dieser Arbeit tragen zum generellen Verständnis der elektronischen Struktur von dünnen organischen Filmen und Grenzflächen bei. Es wird gezeigt, dass verschiedene Spektroskopieformen der Photoemission sehr hilfreich sind, um Oberflächen und Grenzflächen zu untersuchen. Die Daten in dieser Arbeit weisen darauf hin, dass Vielteilchen Effekte in organischen Dünnschichten eine wichtige Rolle spielen, besonders an Grenzflächen mit starker Wechselwirkung. Diese Effekte können für unterschiedliche Materialeigenschaften von Bedeutung sein. Im ersten Teil dieser Dissertation wird eine systematische Serie von Polyacen Molekülen mit NEXAFS Spektroskopie untersucht. Der Vergleich mit Rumpfniveau und IPES Daten zeigt, dass Rumpfanregungen und Rumpfexzitonen als Vielteilchenanregungen verstanden werden müssen. Dieser Befund impliziert zum Beispiel, dass eine große Exzitonenbindungsenergie nicht automatisch bedeutet, dass das angeregte Elektron nahe am Rumpfloch lokalisiert sein muss. Da diese Effekte auch für Valenzexzitonen auftreten, spielen sie auch bei der Separation von Ladungsträgern oder Rekombination von Elektronen und Löchern eine Rolle. Im nächsten Kapitel werden fundamentale Effekte in organischen Multilagenfilmen und Metall-Organik Grenzflächen mit Rumpfniveau- und NEXAFS Spektroskopie untersucht. Dies wird anhand der systematisch ausgewählten Molekülserie BTCDA, BTCDI, PTCDA, PTCDI durchgeführt. Es wird gezeigt, dass sich im Falle von starker Wechselwirkung an den Grenzflächen eine Substrat-Adsorbat-Zustandsdichte bildet, die zu starken Ladungstransfersatelliten führen kann, ähnlich wie sie für Übergangsmetallkomplexe bekannt sind. Die experimentellen Daten können mit einem Model verstanden werden, das das Single Impurity Anderson Modell mit dem Ansatz von Sawatzky et al. zur Beschreibung von Ladungstransfersatelliten in Übergangsmetallkomplexen vereint. Diese Herangehensweise ist equivalent zum Ansatz von Gunnarsson und Schönhammer für Adsorbate. Sie erlaubt jedoch eine relativ einfache semiquantitative Auswertung der experimentellen Daten. Ein Vergleich der Spektren für verschiedene Adsorbatschichten weist darauf hin, dass Vielteilcheneffekte besonders dann stark sind, wenn die vom LUMO abgeleitete Zustandsdichte teilweise gefüllt ist. Im dritten Teil dieser Arbeit wird exemplarisch jeweils ein organischer Multilagenfilm (SnPc), eine Organik-Metall Grenzfläche mit starker Wechselwirkung (SnPc/Ag) sowie eine Organik-Organik Grenzfläche (SnPc/PTCDA/Ag) mit resonanter Auger Spektroskopie untersucht. Durch den Vergleich der Daten wird der Beitrag der Vielteilcheneffekte zu den Autoionisationsspektren klar. Demnach laufen die Elektron-Vibrations-Kopplung und der Adsorbat-Substrat Ladungstransfer auf der Zeitskala der Rumpflochlebensdauer ab. Außerdem ist die Wechselwirkung an der Organik-Organik Grenzfläche zwischen SnPc und PTCDA sehr schwach, vergleichbar mit der intermolekularen Wechselwirkung in Multilagenschichten trotz einer parallelen Verschiebung aller elektronischen Niveaus in der SnPc Schicht. Desweiteren wird eine relativ schwache aber dennoch signifikante Elektron-Elektron Korrelation in den oberen Valenzorbitalen gefunden, die eine wichtige Rolle für den Ladungstransfer zwischen Adsorbat und Substrat spielt. Daher werden im letzten Teil dieser Dissertation die stark gekoppelten Adsorbat Filme kurz im Kontext des Hubbard Modells diskutiert. Mit den Daten aus dieser Arbeit können solche Monolagenfilme in den Bereich für mittlere Korrelationsstärke eingeordnet werden. Folglich kann man für solche Adsorbatfilme Eigenschaften erwarten, die dem außergewöhnlichen Verhalten stark korrelierter Systeme ähneln, für die z. B. Mott Metall-Isolator Übergänge, interessante magnetische Eigenschaften und Supraleitung beobachtet wurden. Zusätzlich werden im Anhang kurz einige Ergebnisse aus den Untersuchungen an einem Schichtsystem diskutiert, das aus einer Monolage Alkylketten auf dem anorganischen Halbleiter Silizium besteht und auch als self-assembled monolayer (SAM) bekannt ist. An den Alkylketten wird exemplarisch gezeigt, dass die elektronische Bandstruktur von kurzen, sich endlich wiederholenden Einheiten sehr gut durch einen relativ einfachen Quantentrog Ansatz wiedergegeben werden kann. Im Prinzip kann dieser Ansatz auch auf mehrdimensionale Systeme angewendet werden. Daher ist er für die Beschreibung von E(k) Relationen in intermediären Systemen mit endlichen Wiederholeinheiten sehr nützlich. Desweiteren wird in den Photoelektronen- und NEXAFS Spektren eine starke Wechselwirkung an der alkyl/Si Grenzfläche beobachtet. Es wird gezeigt, dass die Grenzflächenzustände durch moderate Röntgenstrahlung modifiziert werden können, was wiederum die Eigenschaften für Ladungstransport durch die Alkylschicht beeinflusst.
14

Energy-Dispersive NEXAFS: A Novel Tool for the Investigation of Intermolecular Interaction and Structural Phase Dynamics / Energiedispersives NEXAFS: Eine neue Methode zur Untersuchung intermolekularer Wechselwirkung und Phasendynamik

Scholz, Markus January 2013 (has links) (PDF)
In the context of this thesis, the novel method soft X-ray energy-dispersive NEXAFS spectroscopy was explored and utilized to investigate intermolecular coupling and post-growth processes with a temporal resolution of seconds. 1,4,5,8- naphthalene tetracarboxylic acid dianhydride (NTCDA)multilayer films were the chosen model system for these investigations. The core hole-electron correlation in coherently coupled molecules was studied by means of energy-dispersive near-edge X-ray absorption fine-structure spectroscopy. A transient phase was found which exists during the transition between a disordered condensed phase and the bulk structure. This phase is characterized by distinct changes in the spectral line shape and energetic position of the X-ray absorption signal at the C K-edge. The findings were explained with the help of theoretical models based on the coupling of transition dipole moments, which are well established for optically excited systems. In consequence, the experimental results provides evidence for a core hole-electron pair delocalized over several molecules. Furthermore, the structure formation of NTCDA multilayer films on Ag(111) surfaces was investigated. With time-resolved and energy-dispersive NEXAFS experiments the intensity evolution in s- and p-polarization showed a very characteristic behavior. By combining these findings with the results of time-dependent photoemission measurements, several sub-processes were identified in the post- growth behavior. Upon annealing, the amorphous but preferentially flat-lying molecules flip into an upright orientation. After that follows a phase characterized by strong intermolecular coupling. Finally, three-dimensional islands are established. Employing the Kolmogorov-Johnson-Mehl-Avrami model, the activation energies of the sub-processes were determined. / Im Rahmen dieser Arbeit wurden die Möglichkeiten der neuartigen Methode energiedispersive Röntgen-Nahkanten-Absorptions-Spektroskopie für die Untersuchung intermolekularer Wechselwirkungen und zeitabhängiger Prozesse während der Strukturbildung aufgezeigt. Als Modellsystem wurden hierbei 1,4,5,8- Naphthalin-Tetracarboxyls¨aure-Dianhydrid-(NTCDA-) Filme verwendet. Es wurde die Rumpfloch-Elektronen-Wechselwirkung kohärent gekoppelter Moleküle mittels energiedispersiver Röntgen-Nahkanten-Absorptions-Spektroskopie untersucht. Dabei wurde eine Übergangsphase gefunden, die während der Ausbildung einer langreichweitigen Ordnung zeitlich zwischen der ungeordneten und der Volumenstruktur auftritt. Diese Übergangsphase zeichnete sich durch eine charakteristische Änderung der spektralen Linienform und ihrer energetischen Position bei Messungen an der C K-Kante aus. Die experimentellen Befunde lassen sich mit Hilfe theoretischer Modelle erklären, welche die Kopplung von Übergangsdipolmomenten beschreiben. Diese theoretischen Konzepte sind bei optisch angeregten Systemen etabliert. Die experimentellen Ergebnisse zeigen den über mehrere Moleküle delokalisierten Charakter des Rumpfloch-Elektron-Paars. Zudem wurde die Strukturbildung von mehrlagigen NTCDA-Filmen auf Ag(111) untersucht. Zeitabhängige energiedispersive NEXAFS-Experimente mit s- und p-polarisiertem Licht zeigten ein charakteristisches Verhalten. In Kombination mit zeitabhängigen Photoemissionsmessungen wurden bei der Strukturbildung verschiedene Unterprozesse gefunden. Nach erwärmen der Probe richten sich die ursprünglich flach orientierte Moleküle zunächst auf. Im Anschluss folgt eine Aggregation der Moleküle in einer Phase mit starker intermolekularer Kopplung. Letztendlich bildet sich die bekannte dreidimensionale Filmstruktur aus. Anhand des Kolmogorov-Johnson-Mehl-Avrami Modells konnte die Aktivierungsenergie für die verschiedenen Unterprozesse ermittelt werden.
15

Photoemission electron microscopy and atomic force microscopy of phase- separated Langmuir-Blodgett monolayer thin films

Christensen, Stephen Lynd 06 January 2010
Langmuir-Blodgett (LB) organic monomolecular (monolayer) films containing fatty acids and their perfluorinated counterparts separate into phases under certain conditions. These perfluorinated surfactant containing mixed-phase systems have been shown to exhibit many favourable attributes in comparison to non- perfluorinated surfactant monolayers. In this thesis project, two of these films were investigated. One film is a 2:1 ratio mixture of arachidic acid (C19H39COOH AA) to perfluorotetradecanoic acid (C13F27COOH PA), which phase-separates into hexagonal domains ~6 ìm large (2:1 ratio of AA to PA 2AA1PA). The other film is a 2:1 mixture of stearic acid (C17H35COOH - SA) to PA, which phase-separates into linear domains ~300 nm wide (2:1 ratio of SA to PA 2SA1PA).<p> Through the use of atomic force microscopy (AFM), and various synchrotron photoemission electron microscopy-based (PEEM) techniques, the films were characterized. As properties such as molecular organization, and dispersion of the molecules in the film, affect film function, it is necessary to use a variety of techniques to better understand order and composition in the films.<p> First, the well-known and previously-studied film, 2AA1PA, was used to better understand contrast mechanisms in the energy filtered x-ray photoemission electron microscope (X-PEEM) at the CLS. Through the use of techniques such as secondary electron emission microscopy (SEEM), ultraviolet photoelectron spectroscopy (UPS), and x-ray linear dichroism microscopy (XLDM), the effects of secondary electrons, valence character, and polarization dependence were studied so as to better understand their contribution to contrast in energy-filtered PEEM-based spectromicroscopy.<p> Second, the composition and organization of a novel system (2SA1PA), was characterized using traditional near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. As the size of the domains in the 2SA1PA system are below the spatial resolution limit of PEEM spectromicroscopy, methods involving selective phase dissolution, and spectrum subtraction, were used to acquire phase composition and molecular order information.<p> The high lateral and vertical spatial resolution of AFM allowed physical imaging and confirmation of sample structure, as well as very accurate domain height determination. X-PEEM supplements this with chemical sensitivity using high spatial resolution spectromicroscopy. Therefore, using AFM and X-PEEM as complimentary techniques, it is possible to physically and chemically characterize phase-separated monolayer films.
16

Photoemission electron microscopy and atomic force microscopy of phase- separated Langmuir-Blodgett monolayer thin films

Christensen, Stephen Lynd 06 January 2010 (has links)
Langmuir-Blodgett (LB) organic monomolecular (monolayer) films containing fatty acids and their perfluorinated counterparts separate into phases under certain conditions. These perfluorinated surfactant containing mixed-phase systems have been shown to exhibit many favourable attributes in comparison to non- perfluorinated surfactant monolayers. In this thesis project, two of these films were investigated. One film is a 2:1 ratio mixture of arachidic acid (C19H39COOH AA) to perfluorotetradecanoic acid (C13F27COOH PA), which phase-separates into hexagonal domains ~6 ìm large (2:1 ratio of AA to PA 2AA1PA). The other film is a 2:1 mixture of stearic acid (C17H35COOH - SA) to PA, which phase-separates into linear domains ~300 nm wide (2:1 ratio of SA to PA 2SA1PA).<p> Through the use of atomic force microscopy (AFM), and various synchrotron photoemission electron microscopy-based (PEEM) techniques, the films were characterized. As properties such as molecular organization, and dispersion of the molecules in the film, affect film function, it is necessary to use a variety of techniques to better understand order and composition in the films.<p> First, the well-known and previously-studied film, 2AA1PA, was used to better understand contrast mechanisms in the energy filtered x-ray photoemission electron microscope (X-PEEM) at the CLS. Through the use of techniques such as secondary electron emission microscopy (SEEM), ultraviolet photoelectron spectroscopy (UPS), and x-ray linear dichroism microscopy (XLDM), the effects of secondary electrons, valence character, and polarization dependence were studied so as to better understand their contribution to contrast in energy-filtered PEEM-based spectromicroscopy.<p> Second, the composition and organization of a novel system (2SA1PA), was characterized using traditional near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. As the size of the domains in the 2SA1PA system are below the spatial resolution limit of PEEM spectromicroscopy, methods involving selective phase dissolution, and spectrum subtraction, were used to acquire phase composition and molecular order information.<p> The high lateral and vertical spatial resolution of AFM allowed physical imaging and confirmation of sample structure, as well as very accurate domain height determination. X-PEEM supplements this with chemical sensitivity using high spatial resolution spectromicroscopy. Therefore, using AFM and X-PEEM as complimentary techniques, it is possible to physically and chemically characterize phase-separated monolayer films.
17

Charakterisierung einer XUV-Laserplasmaquelle und ihre Anwendung in der NEXAFS-Spektroskopie an organischen Molekülen

Beck, Michael. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Berlin.
18

Development of in-situ flow electrochemical Scanning Transmission X-ray Microscopy

Prabu, Vinod January 2017 (has links)
Understanding electrically activated processes at electrode-electrolyte interfaces is needed to improve many technologies, including energy conversion, semiconductor devices, bio-sensors, corrosion protection, etc. In-situ spectro-electrochemical studies based on a wide range of spectroscopies are particularly useful. Scanning Transmission X-ray microscopy (STXM) is a synchrotron-based technique which measures near-edge X-ray absorption fine structure (NEXAFS) with high spatial resolution. In addition to information on morphology, STXM also provides chemical state analysis using the X-ray absorption data, which makes in-situ STXM studies of electrochemical process of special interest. This thesis reports ex-situ and in-situ STXM based qualitative and quantitative studies on copper (Cu) electrodeposition and electrostripping. The influence of electrolyte pH on the distribution of Cu(I) and Cu(0) species electrodeposited from aqueous CuSO4 solutions was studied. An instrument capable of performing in-situ flow electrochemical STXM studies was designed and fabricated. The performance of this device was evaluated for in-situ Cu electrodeposition studies. Findings based on ex-situ and in-situ STXM studies are discussed. Suggestions are made for further instrumentation improvements. / Thesis / Master of Science (MSc)
19

Hochauflösende Bildgebung und NEXAFS-Spektroskopie mit weicher Röntgenstrahlung aus laserinduzierten Plasmen / Soft X-ray high-resolution imaging and NEXAFS spectroscopy using a laser-induced plasma

Müller, Matthias 20 October 2018 (has links)
No description available.
20

Eigenschaften von Oberflächenproteinen auf der Nanometerskala - Eine Photoemissionsstudie

Kade, Andreas 14 June 2010 (has links) (PDF)
In der vorliegenden Dissertation werden Dünnschichten des Oberflächenproteins (Surface (S)-Layer) des Bacillus sphaericus NCTC 9602 auf einem SiOx-Substrat mittels Photoemission (PE) und Röntgenabsorptionsspektroskopie untersucht. Sowohl die PE-Daten als auch die Nahkantenabsorptionsspektren (NEXAFS) sind in qualitativer und quantitativer Übereinstimmung mit der erwarteten elektronischen Struktur des S-Layers, was auf eine weitgehende Stabilität des Systems gegenüber den Messbedingungen (Vakuum, Röntgenstrahlung) hindeutet. Mittels resonanter Photoemission war es möglich, die einzelnen Valenzbandstrukturen individuellen chemischen Bindungen zuzuordnen. Aus dem Vergleich der Intensitäten von Participator- und Spectator- Übergängen konnte ferner die Zeitskala für Elektronenhüpfprozesse innerhalb des LUMO (Lowest Unoccupied Molecular Orbital, niedrigstes unbesetztes Molekülorbital) zu 100 fs abgeschätzt werden, was in guter Übereinstimmung mit einem in der Literatur vorgeschlagenen, auf Drehschwingungen basierenden Transportmechanismus ist. Der S-Layer wurde im folgenden als Templat für die Erzeugung von Metallclustern genutzt, die sich bei physikalischer Deposition reiner Metalle (Ag, Co) ausbilden. Elektronenmikroskopische Untersuchungen zeigen, dass sich im Fall nominaler Silberbedeckungen im Monolagenbereich Cluster von der Größe einiger nm bilden, die sich auf einem quadratischen Übergitter mit einer Kantenlänge von 14 nm anordnen. Die spektroskopischen Daten weisen die Sauerstoffatome der Peptidketten als wahrscheinlichste Adsorptionsplätze aus. Während die Ag-Cluster sich weitgehend nicht-reaktiv verhalten, zeigen Co-Cluster deutlich stärkere Wechselwirkung mit dem Templat. Unter Nutzung eines im NEXAFS-Mode betriebenen Photoelektronenmikroskops (PEEM) wurde schließlich die Schädigung reiner und Cluster bedeckter S-Layer bei intensiver Röntgenbestrahlung untersucht. Die Schädigung ist im Fall der Clusterbedeckung deutlich niedriger als bei reinen Oberflächen. Ein nur auf Abschattung des Templats durch die Cluster beruhendes Modell beschreibt die spektroskopischen Daten jedoch nicht zufriedenstellend. Vielmehr müssen Schädigungen des Templats durch Elektronen, die infolge Röntgenabsorption innerhalb der Cluster generiert werden, mit berücksichtigt werden.

Page generated in 0.4136 seconds