• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 333
  • 129
  • 75
  • 62
  • 50
  • 42
  • 11
  • 11
  • 9
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 883
  • 643
  • 469
  • 130
  • 76
  • 75
  • 71
  • 67
  • 67
  • 63
  • 61
  • 59
  • 59
  • 59
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Computational characterisation of DNA methylomes in mycobacterium tuberculosis Beijing hyper- and hypo-virulent strains

Naidu, Alecia Geraldine January 2014 (has links)
Philosophiae Doctor - PhD / Mycobacterium tuberculosis, the causative agent of tuberculosis, is estimated to infect approximately one-third of the world’s population and is responsible for around 2 million deaths per year. The disease is endemic in South Africa which has one of the world’s highest tuberculosis incidence and death rates. The M. tuberculosis Beijing genotype are characterised by having an enhanced virulence capability over other M. tuberculosis strains and are the predominant strain observed in the Western Cape of South Africa. DNA methylation is a largely untapped area of research in M.tuberculosis and has been poorly described in the literature especially given its connection to virulence despite it being well characterised along with its role in virulence in other pathogenic bacteria such as E.coli. The overall aim was to characterise a global DNA methylation profile for two M. tuberculosis Beijing strains, hyper-virulent and hypo-virulent, using single molecule real time sequencing data technology. Moreover, to determine if adenine methylation in promoter regions has a possible functional role. This study identified and characterised the DNA methylation profile at the single nucleotide resolution in these strains using Pacific Biosciences single molecule real time sequencing data. A computational approach was used to discern DNA methylation patterns between the hyper and hypo-virulent strains with a view of understanding virulence in the hyper-virulent strain. Methylated motifs, which belong to known Restriction Modification (RM) systems of the H37Rv referencegenome were also identified. N6-methyladenine (m6A) and N4-methlycytosine (m4C) loci were identified in both strains. m6A were idenitified in both strains occuring within the following sequence motifs CACGCAG (Type II RM system), GATNNNNRTAC/GTAYNNNNATC (Type I RM system), while the CTGGAGGA motif was found to be uniquley methylated in the hyper-virulentstrain.Interestingly, the CACGCAG motif was significantly methylated (p = 9.9 x10 -63) at a higher proportion in intergenic regions (~70%) as opposed to genic regions in both the hyper-virulent and hypo-virulent strains suggesting a role in gene regulation. There appeared to be a higher proportion of m6A occuring in intergenic regions compared to within genes for hyper-virulent (61%) and hypo-virulent (62%) strains. The genic proportion revealed that 35% of total m6A occurred uniquely within genes for the hyper-virulent strain while 27.9% for uniquely methylated genes in hypo-virulent strain.
262

Genome assembly of next-generation sequencing data for the Oryx bacillus : species of the Mycobacterium tuberculosis complex

Direko, Mmakamohelo January 2011 (has links)
>Magister Scientiae - MSc / Next generation sequencing (NGS) technology platforms have accelerated ability to produce completed genome assemblies. Recently, collaborators at Tygerberg Medical School outsourced the sequencing of Oryx bacillus, a member of the Mycobacterium tuberculosis complex (MTC). A total of 31,271,059 short reads were generated and required filtering, assembly and annotation using bioinformatics algorithms. In this project, an NGS assembly pipeline was implemented, tailored specifically for SOLiD sequence data. The raw reads were aligned to seven fully sequenced and annotated MTC members, namely, Mycobacterium tuberculosis H37Rv, H37Ra, CDC1551, F11, KZN 1435, Mycobacterium bovis AF2122/97 and Mycobacterium bovis BCG str. Pasteur 1173P2 using NovoalignCS. Depth and breadth of sequence coverage across each base of the reference genome was calculated using BEDTools, and structural variation. Structural variation at the nucleotide level including deletions, insertions and single nucleotidepolymorphisms (SNPs) were called using three tools, GATK, SAMtools and Nesoni. These variations were further filtered using in-house PERL scripts. Putative functional roles for the alterations at the DNA level were extrapolated from the overlap with essential genes present in annotated MTC members. Approximately 20,730,631 short reads (59.78%) out of a total of 31,271,059 reads aligned to the seven reference genomes. The per base sequence coverage calculations revealed an average of 1,243 unaligned regions. These unaligned regions overlapped with mycobacterial regions of difference (RD) and genetic phage elements acquired by the MTC through horizontal gene transfer and are genes prevalent in the clinical isolates of M. tuberculosis. A total of 2,680 genetic variations were identified and categorised into 845 synonymous and 1,724 non-synonymous SNPs together with 44 insertions and 67 deletions. Some of the variant alleles overlapped known genes to be involved in TB drug resistance. While the biological significance of our findings remain to be elucidated, it nonetheless deserves further attention, because SNPs have the potential to impact on strain phenotype by gene disruption. Therefore, any hypotheses generated from these large-scale analyses will be tested by our collaborators at Tygerberg medical school.
263

Methods for Viral Population Analysis

Artyomenko, Alexander 08 August 2017 (has links)
The ability of Next-Generation Sequencing (NGS) to produce massive quantities of genomic data inexpensively has allowed to study the structure of viral populations from an infected host at an unprecedented resolution. As a result of a high rate of mutation and recombination events, an RNA virus exists as a heterogeneous "swarm". Virologists and computational epidemiologists are widely using NGS data to study viral populations. However, discerning rare variants is muddled by the presence of errors introduced by the sequencing technology. We develop and implement time- and cost-efficient strategy for NGS of multiple viral samples, and computational methods to analyze large quantities of NGS data and to handle sequencing errors. In particular, we present: (i) combinatorial pooling strategy for massive NGS of viral samples; (ii) kGEM and 2SNV — methods for viral population haplotyping; (iii) ShotMCF — a Multicommodity Flow (MCF) based method for frequency estimation of viral haplotypes; (iv) QUASIM — an agent-based simulator of viral evolution taking in account viral variants and immune response.
264

Genetic and epigenetic factors associated with human male infertility / Facteurs génétiques et épigénétiques associés à l'infertilité masculine

Dumargne, Marie-Charlotte 19 February 2016 (has links)
La spermatogenèse est un processus complexe qui dépend de la coopération de nombreux gènes. Son produit final le spermatozoïde, est un sujet d’étude idéal car il renferme à la fois des indices d’événements passés ainsi que des informations qui seront transmises à l'ovocyte lors de la fécondation. L'identification de nouveaux acteurs de la spermatogenèse, des modifications spécifiques de l'ADN du sperme ou la présence de transcrits spécifiques pourraient servir comme biomarqueurs dans le diagnostic de l’infertilité. Cette thèse avait pour but d’analyser le génome, le transcriptome et l’épigénome de spermatozoïdes dans le contexte de l'infertilité masculine. Nous avons identifié de nouvelles causes génétiques et confirmé la présence d'anomalies de méthylation dans le sperme d'hommes infertiles. Nous avons découvert 20 mutations dans le gène SOX8, chez des patients atteints de trouble du développement sexuel ou d'infertilité masculine ou féminine, qui apparaît comme un régulateur du développement et de la fonction gonadique. Par séquençage d’exome, une mutation dans le gène ATAD2 modeleur de la chromatine spécifique de la lignée germinale mâle fut également identifiée. Par RNA-seq et MeDIP-chIP du sperme d’hommes fertiles et infertiles, nous avons caractérisé la signature transcriptionnelle du sperme. La majorité des ARNs spermatiques humain est remarquablement conservée chez les mammifères placentaires suggérant des fonctions ancestrales importantes. Enfin, nos données transcriptomiques et épigénétiques tendent à indiquer qu’une expression et une régulation adéquates des gènes impliqués dans le remodelage de la chromatine constituent un facteur clé pour la fertilité masculine. / Spermatogenesis is a complex process which depends on the cooperation of many genes. The end-product, the spermatozoon, is an ideal subject for study since it carries both clues of the past events and information which will be transmitted to the oocyte at fertilization. The identification of main actors of spermatogenesis, specific modifications of sperm DNAs or sperm specific isoforms could improve our understanding of a such complex mechanism and could serve as a determination of biomarkers or diagnostic tools for fertility. The aim of the project was to go further three omes: genome, epigenome and transcriptome of mature human sperm in the context of male infertility. We identified new genetic causes of male infertility and confirmed the presence of methylation abnormalities in sperm cells of infertile men. Firstly, SOX8 gene was found mutated in a cohort of 20 patients with disorder of sex development and male or female infertility. Similarly, to NR5A1, SOX8 appears to be a novel regulator of gonadal development and function. Then by exome-sequencing, we identified a homozygous nonsense mutation in the male germline-specific chromatin modeler ATAD2. Furthermore, RNA-seq and MeDIP-chIP of sperm from fertile and infertile men along with bioinformatics analyzes of the generated data, enabled us to characterize more deeply the normal sperm transcriptional signature. We also found that the majority of human sperm RNAs are remarkably preserved in placental mammals suggesting crucial ancestral functions. Finally, proper expression and regulation of chromatin remodelers seem to be critical for male fertility, as revealed by both the transcriptomic and the epigenetic data.
265

Privacy in Voice-over-IP mitigating the risks at SIP intermediaries

Neumann, Thorsten 02 September 2010 (has links)
Telephony plays a fundamental role in our society. It enables remote parties to interact and express themselves over great distances. The telephone as a means of communicating has become part of every day life. Organisations and industry are now looking at Voice over IP (VoIP) technologies. They want to take advantage of new and previously unavailable voice services. Various interested parties are seeking to leverage the emerging VoIP technology for more flexible and efficient communication between staff, clients and partners. <o>VoIP is a recent innovation enabled by Next Generation Network (NGN). It provides and enables means of communication over a digital network, specifically the Internet. VoIP is gaining wide spread adoption and will ultimately replace traditional telephony. The result of this trend is a ubiquitous, global and digital communication infrastructure. VoIP, however, still faces many challenges. It is not yet as reliable and dependable as the current Public Switched Telephone Network (PSTN). The employed communication protocols are immature with many security flaws and weaknesses. Session Initiation Protocol (SIP), a popular VoIP protocol does not sufficiently protect a users privacy. A user’s information is neither encrypted nor secured when calling a remote party. There is a lack of control over the information included in the SIP messages. Our specific concern is that private and sensitive information is exchanged over the public internet. This dissertation concerns itself with the communication path chosen by SIP when establishing a session with a remote party. In SIP, VoIP calls are established over unknown and untrusted intermediaries to reach the desired party. We analyse the SIP headers to determine the information leakage at each chosen intermediary. Our concerns for possible breach of privacy when using SIP were confirmed by the findings. A user’s privacy can be compromised through the extraction of explicit private details reflected in SIP headers. It is further possible to profile the user and determine communication habits from implicit time, location and device information. Our research proposes enhancements to SIP. Each intermediary must digitally sign over the SIP headers ensuring the communication path was not be altered. These signatures are added sequentially creating a chain of certified intermediaries. Our enhancements to SIP do not seek to encrypt the headers, but to use these intermediary signatures to reduce the risk of information leakage. We created a model of our proposed enhancements for attaching signatures at each intermediary. The model also provides a means of identifying unknown or malicious intermediaries prior to establishing a SIP session. Finally, the model was specified in Z notation. The Z specification language was well suited to accurately and precisely represent our model. This formal notation was adopted to specify the types, states and model behaviour. The specification was validated using the Z type-checker ZTC. Copyright / Dissertation (MSc)--University of Pretoria, 2010. / Computer Science / unrestricted
266

Organ and tissue donation and transplantation : a perspective of South African Baptists from Baptist Northern Association and its implication for preaching

Van den Berg, Leon 02 October 2007 (has links)
South Africans are in dire need of organs and tissues for transplantation. The impact is felt by many, irrespective of colour, creed or religion. No known studies have been conducted amongst Baptists in South Africa to determine their point of view on the subject. My own personal experience as both a Baptist pastor and now as procurement operations manager of a bone tissue centre, has shown that most people are ignorant and uninformed about bone tissue donation and also, to a lesser degree about organ donation. This study seeks to ascertain what a representative group of Baptist delegates who attended the annual Northern Baptist Association Assembly in June 2005 think about organ and tissue donation. Their views were obtained by means of an empirical study. The results are interpreted to determine if they are in favour of or against organ and tissue donation. It is important to note their beliefs regarding the Scriptural position on donation and whether Christians could be encouraged from the Word to become organ and tissue donors or not. Donation of organs and tissue benefits not only the recipient or patient, but also affects the donor family, or next-of-kin. The study aims to determine if the respondents felt that organ and tissue donation holds pastoral benefits to the donor families and recipients. Baptists and other Christian denominations have a responsibility to preach God’s Word and to apply it to real-world situations. Death and donation of organs and tissue is a reality that our people face, often unprepared and less than properly informed. I trust that the findings of this study will be of assistance to pastors and teachers whose desire it is to inform and educate their congregations about the selfless gift of organ and tissue donation. / Dissertation (MA (Research in Practical Theology))--University of Pretoria, 2007. / Practical Theology / MA / unrestricted
267

Towards the Prediction of Mutations in Genomic Sequences

Martinez, Juan Carlos 15 November 2013 (has links)
Bio-systems are inherently complex information processing systems. Furthermore, physiological complexities of biological systems limit the formation of a hypothesis in terms of behavior and the ability to test hypothesis. More importantly the identification and classification of mutation in patients are centric topics in today’s cancer research. Next generation sequencing (NGS) technologies can provide genome-wide coverage at a single nucleotide resolution and at reasonable speed and cost. The unprecedented molecular characterization provided by NGS offers the potential for an individualized approach to treatment. These advances in cancer genomics have enabled scientists to interrogate cancer-specific genomic variants and compare them with the normal variants in the same patient. Analysis of this data provides a catalog of somatic variants, present in tumor genome but not in the normal tissue DNA. In this dissertation, we present a new computational framework to the problem of predicting the number of mutations on a chromosome for a certain patient, which is a fundamental problem in clinical and research fields. We begin this dissertation with the development of a framework system that is capable of utilizing published data from a longitudinal study of patients with acute myeloid leukemia (AML), who’s DNA from both normal as well as malignant tissues was subjected to NGS analysis at various points in time. By processing the sequencing data at the time of cancer diagnosis using the components of our framework, we tested it by predicting the genomic regions to be mutated at the time of relapse and, later, by comparing our results with the actual regions that showed mutations (discovered at relapse time). We demonstrate that this coupling of the algorithm pipeline can drastically improve the predictive abilities of searching a reliable molecular signature. Arguably, the most important result of our research is its superior performance to other methods like Radial Basis Function Network, Sequential Minimal Optimization, and Gaussian Process. In the final part of this dissertation, we present a detailed significance, stability and statistical analysis of our model. A performance comparison of the results are presented. This work clearly lays a good foundation for future research for other types of cancer.
268

Identification, Validation and Characterization of the Mutation on Chromosome 18p which is Responsible for Causing Myoclonus-Dystonia

Vanstone, Megan January 2012 (has links)
Myoclonus-Dystonia (MD) is an inherited, rare, autosomal dominant movement disorder characterized by quick, involuntary muscle jerking or twitching (myoclonus) and involuntary muscle contractions that cause twisting and pulling movements, resulting in abnormal postures (dystonia). The first MD locus was mapped to 7q21-q31 and called DYT11; this locus corresponds to the SGCE gene. Our group previously identified a second MD locus (DYT15) which maps to a 3.18 Mb region on 18p11. Two patients were chosen to undergo next-generation sequencing, which identified 2,292 shared novel variants within the critical region. Analysis of these variants revealed a 3 bp duplication in a transcript referred to as CD108131, which is believed to be a long non-coding RNA. Characterization of this transcript determined that it is 863 bp in size, it is ubiquitously expressed, with high expression in the cerebellum, and it accounts for ~3% of MD cases.
269

New Approach in Fabrication of Solid-State Nanopore for Bio-Sensing Applications

Kwok, Wing Hei Harold January 2015 (has links)
The 21st century marks the defining point of human history in terms of technological advancement. In 2014, we were at the edge of acquiring a complete understanding of the fundamental construct to all life forms. The capability to manipulate and recreate lives as desired will soon be at our hands and will eventually lead to the redefinition of life and humanity. This brave new world, for better or worse, will be stitched together by scientific breakthroughs in many disciplines. Nanopore fluidic system – and microfluidic in general – might be one of the key puzzles towards the future. It is seen as a likely candidate for the next generation of rapid and low-cost genetic sequencing technology, which will allow us to gain thorough insight into the genetic code of every living organism on earth. It can also have the capability to individually detect and manipulate virtually any biological molecules, possibly allowing it to be a universal diagnostic tool or a bio-molecule synthesiser. The future of nanopore fluidic system is prosperous, but the difficulties are equally challenging. Currently, both biological and solid-state nanopores are non-trivial to create. For instance, a small solid-state nanopore can only be fabricated with expansive machinery in a low-yield, low-throughput manner. To overcome this challenge, a new set of methods involving high electric field to fabricate and enlarge a solid-state nanopore has been developed. It was found that a nanopore, when subjected to a high electric field, can be enlarged in angstrom increments and cleared of unidentified obstructions that cause low-frequency ionic current fluctuations. It was also found that an intact solid-state membrane, when subjected to a high electric field for a period of time, can leave a single nanopore imprinted onto it. The process of creation is best describe as a dielectric breakdown event and can be modeled by the percolation theory for dielectric breakdown. The resulting nanopores are cylindrical in shape and are shown to be equally capable of single molecule sensing compare to pores created by other methods. To accommodate future nanopore designs and applications and to examine the scope of applicability of the new fabrication approach, more advanced nanopore devices were created on some dual-layer solid-state membranes comprising of a metallic and a dielectric layer. Experiments indicated that the method could indeed create nanopore on such advanced membranes. It was further shown that the metallic layer receded further than the dielectric layer, forming a hollow conical shape at the opening of the dielectric nanopore. Such metalized bi-layer nanopore system was found to interact strongly with short single stranded DNA molecules, resulting in prolonged DNA translocation time. A simple picture of the mechanism was proposed to explain the observation. Lastly, to extend the limit of the new fabrication approach, I attempted to fabricate nanopore on complex multi-layer membranes involving a graphene film sandwiched in several dielectric materials. It was found that the quality of the graphene film and the transfer method were vital to the success of this project. Nevertheless, preliminary results indicated that the new method could create a nanopore through this complex multi-layer membrane. The new method to fabricate and tune both simple and complex nanopores is amongst the simplest, the least costly and the most efficient one that one can imagine. The research work has already sparked a dramatic increase in scientific throughput in our laboratory and other laboratories we had collaboration with. It fueled more than a dozen projects and involved close to a thousand nanopores in total. Such projects are far from possible if they were to rely on conventional fabrication methods. However, these are insignificant if we consider the new method is simple enough that, for the very first time, general public can easily access nanofabrication and single-molecule manipulation technology. The liberation of nanotechnology to the general public symbolically marks the beginning of a brave new world.
270

Whole Exome Sequencing to Identify Disease-Causing Mutations in Lower Motor Neuron Disease and Peripheral Neuropathy

Wagner, Justin January 2016 (has links)
Lower motor neuron diseases and peripheral neuropathies are two groups of diseases that include multiple rare disorders where many causes are unknown and definitive treatments are unavailable. Understanding the molecular etiology of these genetic diseases provides an opportunity for rapid diagnosis, preconception genetic counseling and, in a subset, direction for the development of future treatment options. The recent introduction of whole exome sequencing (WES) marks a new era in Mendelian genetic disease research as the majority of the coding region of the genome can be sequenced in a timely and cost-effective manner. In this study, WES was used to investigate the molecular etiology of a cohort of 37 patients presenting with lower motor neuron disease or peripheral neuropathy. A molecular diagnosis was determined for seven patients informing the diagnostic utility of WES. Novel phenotypes were found for three genes originally associated with a different disorder. Finally, the foundation has been laid, through the use of functional studies and large scale data-sharing, to identify novel disease-causing genes for lower motor neuron disease and peripheral neuropathy.

Page generated in 0.0185 seconds