• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 27
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 110
  • 40
  • 37
  • 32
  • 28
  • 21
  • 21
  • 21
  • 21
  • 19
  • 18
  • 17
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Chandra Observations of the Interacting NGC 4410 Galaxy Group

Smith, Beverly J., Nowak, Michael, Donahue, Megan, Stocke, John 01 October 2003 (has links)
We present high-resolution X-ray imaging data from the ACIS-S instrument on the Chandra telescope of the nearby interacting galaxy group NGC 4410. Four galaxies in the inner portion of this group are clearly detected by Chandra, including the peculiar low-luminosity radio galaxy NGC 4410A. In addition to a nuclear point source, NGC 4410A contains diffuse X-ray emission, including an X-ray ridge extending out to about 12″ (6 kpc) to the northwest of the nucleus. This ridge is coincident with an arc of optical emission-line gas, which has previously been shown to have optical line ratios consistent with shock ionization. This structure may be due to an expanding superbubble of hot gas caused by supernovae and stellar winds or by the active nucleus. The Chandra observations also show four or five possible compact ultraluminous X-ray (ULX) sources (L X ≥ 10 39 ergs s -1) associated with NGC 4410A. At least one of these candidate ULXs appears to have a radio counterpart, suggesting that it may be due to an X-ray binary with a stellar-mass black hole, rather than an intermediate-mass black hole. In addition, a faint diffuse intragroup X-ray component has been detected between the galaxies (L X ∼ 10 41 ergs s -1). This supports the hypothesis that the NGC 4410 group is in the process of evolving via mergers from a spiral-dominated group (which typically has no X-ray-emitting intragroup gas) to an elliptical-dominated group (which often has a substantial intragroup medium).
42

Interstellar Gas in the NGC 4410 Galaxy Group

Smith, Beverly J. 01 October 2000 (has links)
We present new radio continuum, 21 cm H I, and 2.6 mm CO data for the peculiar radio galaxy NGC 4410A and its companion NGC 4410B and compare with available optical and X-ray maps. Our radio continuum maps show an asymmetric double-lobed structure, with a high surface brightness lobe extending 3′.6 (∼100 kpc) to the southeast and a 6′.2 (∼180 kpc) low surface brightness feature in the north-west. Molecular gas is abundant in NGC 4410A, with MH2 ∼ 4 × 109 M⊙ (using the standard Galactic conversion factor) but is undetected in NGC 4410B. H I is less abundant, with MHI ∼ 109 M⊙ for the pair. Our H I map shows a 3 × 108 M⊙ H I tail extending 1′.7 (50 kpc) to the southeast of the pair, coincident with a faint optical tail and partially overlapping with the southeastern radio lobe. The H I tail is anticoincident with a 2′ (56 kpc) long X-ray structure aligned with a stellar bridge that connects the pair to a third galaxy. If this X-ray emission is associated with the group, we infer (3-8) × 108 M⊙ of hot gas in this feature. This may be either intracluster gas or shocked gas associated with the bridge. Our detection of abundant interstellar gas in this pair, including an H I-rich tidal tail near the south-eastern radio lobe, suggests that the observed distortions in this lobe may have been caused by the interstellar medium in this system. The gravitational interaction of the two galaxies and the subsequent motion of the interstellar medium in the system relative to the jet may have produced sufficient ram pressure to bend and distort the radio jet. An alternative hypothesis is that the jet was distorted by ram pressure due to an intracluster medium, although the small radial velocity of NGC 4410A relative to the group and the lack of diffuse X-ray emission in the group makes this less likely unless the group is not virialized or is in the process of merging with another group. Using our VLA data, we also searched for H I counterparts to the other 10 known members of the NGC 4410 group and CO from three other galaxies in the inner group. In our velocity range of 6690-7850 km s-1, we detected six other galaxies above our H I sensitivity limits of 2 × 108 M⊙ for the inner group and 4 × 108 M⊙ for the outer group. The total H I in the group is 1.4 × 1010 M⊙, 80% of which arises from four galaxies in the outer group. Three of these galaxies (VCC 822, VCC 831, and VCC 847) are spirals with MHI/LB ratios typical of field galaxies, while FGC 170A appears to be a gas-rich dwarf galaxy (MB ∼ -18, MHI ∼ 3 × 109 M⊙). In the inner group, the SBa galaxy NGC 4410D (VCC 934) was detected in H I and CO (MHI, ∼ 5 × 108 M⊙ and MH2 ∼ 8 × 108 M⊙) and has a 1′ (28 kpc) long H I tail that points toward the nearby disk galaxy NGC 4410F. NGC 4410F was also detected in H I (MHI ∼ 4 × 108 M⊙). The galaxies in the inner group appear to be somewhat deficient in H I compared to their blue luminosities, suggesting phase changes driven by galaxy-galaxy or galaxy-intracluster medium encounters.
43

Searching For New Long-Period Variable Stars in the Globular Cluster M107

Chapman, Justin 29 August 2022 (has links)
No description available.
44

Kinematics of the Narrow-Line Regions in the Seyfert Galaxies NGC 4151 and NGC 1068

Das, Varendra 03 August 2006 (has links)
We present a study of high-resolution long-slit spectra of the Narrow-Line Regions (NLRs) of NGC 4151 (a Seyfert 1 galaxy) and NGC 1068 (a Seyfert 2 galaxy) obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST). The spectra were retrieved from the Multimission Archive at Space Telescope (MAST) and were obtained from five and seven orbits of HST time resulting in five and seven parallel slit configurations at position angles of 52 degrees and 38 degrees for NGC 4151 and NGC 1068 respectively. The spectra have a spatial resolution of 0.2 arcsecond across and 0.1 arcsecond along each slit. Observations of [O III] emission from the NLRs were made using the medium resolution G430M grating aboard HST. The spectral resolving power of the grating, R~9000, resulted in the detection of multiple kinematic components of the [O III] emission line gas along each slit. Radial velocities of the components were measured using a Gaussian fitting procedure. Biconical outflow models were generated to match the data and for comparison to previous models done with lower dispersion observations. The general trend is an increase in radial velocity roughly proportional to distance from the nucleus, followed by a linear decrease after roughly 100 pc. This is similar to that seen in other Seyfert galaxies, indicating common acceleration and deceleration mechanisms. The full-width at half-maximum (FWHM) of the emission lines reaches a maximum of 1000 km/s near the nucleus, and generally decreases with increasing distance to about 100 km/s in the extended narrow-line region (ENLR), starting at about 400 pc from the nucleus. In addition to the bright emission knots, which generally fit our model, there are faint high velocity clouds that do not fit the biconical outflow pattern of our kinematic model. A comparison of our observations with high-resolution radio maps shows that the kinematics of the faint NLR clouds may be affected by the radio lobes that comprise the inner jet. However, the bright NLR clouds show a smooth transition across the radio knots in radial velocity and velocity dispersion plots and remain essentially undisturbed in their vicinity, indicating that the radio jet is not the principal driving force on the outflowing NLR clouds. A dynamical model was developed for NGC 1068; it includes forces of radiation pressure, gravity, and drag due an ambient medium, simultaneously acting on the NLR clouds. The velocity profile from this model was too steep to fit the data, which show a more slowly increasing velocity profile. Gravity alone was not able to slow down the clouds but with the drag forces included, the clouds could slow down, reaching systemic velocities at distances that depend on the column densities of the NLR gas and density of the intercloud medium. A biconical model using the geometric parameters from our kinematic fit, and the velocity law from the dynamic fit, was used to match the data. The resulting dynamic model represented a poor fit to the data, indicating the need for additional dynamical considerations.
45

Calibration of AGN Reverberation Distance Measurements

Koshida, Shintaro, Yoshii, Yuzuru, Kobayashi, Yukiyasu, Minezaki, Takeo, Enya, Keigo, Suganuma, Masahiro, Tomita, Hiroyuki, Aoki, Tsutomu, Peterson, Bruce A. 14 June 2017 (has links)
In Yoshii et al., we described a new method for measuring extragalactic distances based on dust reverberation in active galactic nuclei (AGNs), and we validated our new method with Cepheid variable stars. In this Letter, we validate our new method with Type Ia supernovae (SNe Ia) that occurred in two of the AGN host galaxies during our AGN monitoring program: SN 2004bd in NGC 3786 and SN 2008ec in NGC 7469. Their multicolor light curves were observed and analyzed using two widely accepted methods for measuring SN distances, and the distance moduli derived are m= 33.47 +/- 0.15 for SN 2004bd and 33.83 +/- 0.07 for SN 2008ec. These results are used to obtain independently the distance measurement calibration factor, g. The g value obtained from the SN Ia discussed in this Letter is gSN= 10.61 +/- 0.50, which matches, within the range of 1s uncertainty, gDUST = 10.60, previously calculated ab initio in Yoshii et al. Having validated our new method for measuring extragalactic distances, we use our new method to calibrate reverberation distances derived from variations of Ha emission in the AGN broad-line region, extending the Hubble diagram to z approximate to 0.3 where distinguishing between cosmologies is becoming possible.
46

Extra-Nuclear Starbursts: Young Luminous Hinge Clumps in Interacting Galaxies

Smith, Beverly J., Soria, Roberto, Struck, Curtis, Giroux, Mark L., Swartz, Douglas A., Yukita, Mihoko 01 March 2014 (has links)
Hinge clumps are luminous knots of star formation near the base of tidal features in some interacting galaxies. We use archival Hubble Space Telescope (HST) UV/optical/IR images and Chandra X-ray maps along with Galaxy Evolution Explorer UV Spitzer IR, and ground-based optical/near-IR images to investigate the star forming properties in a sample of 12 hinge clumps in five interacting galaxies. The most extreme of these hinge clumps have star formation rates of 1-9 M yr-1, comparable to or larger than the "overlap" region of intense star formation between the two disks of the colliding galaxy system the Antennae. In the HST images, we have found remarkably large and luminous sources at the centers of these hinge clumps. These objects are much larger and more luminous than typical "super star clusters" in interacting galaxies, and are sometimes embedded in a linear ridge of fainter star clusters, consistent with star formation along a narrow caustic. These central sources have FWHM diameters of 70 pc, compared to 3 pc in "ordinary" super star clusters. Their absolute I magnitudes range from MI -12.2 to -16.5; thus, if they are individual star clusters they would lie near the top of the "super star cluster" luminosity function of star clusters. These sources may not be individual star clusters, but instead may be tightly packed groups of clusters that are blended together in the HST images. Comparison to population synthesis modeling indicates that the hinge clumps contain a range of stellar ages. This is consistent with expectations based on models of galaxy interactions, which suggest that star formation may be prolonged in these regions. In the Chandra images, we have found strong X-ray emission from several of these hinge clumps. In most cases, this emission is well-resolved with Chandra and has a thermal X-ray spectrum, thus it is likely due to hot gas associated with the star formation. The ratio of the extinction-corrected diffuse X-ray luminosity to the mechanical energy rate (the X-ray production efficiency) for the hinge clumps is similar to that in the Antennae galaxies, but higher than those for regions in the normal spiral galaxy NGC 2403. Two of the hinge clumps have point-like X-ray emission much brighter than expected for hot gas; these sources are likely "ultra-luminous X-ray sources" due to accretion disks around black holes. The most extreme of these sources, in Arp 240, has a hard X-ray spectrum and an absorbed X-ray luminosity of 2 × 1041 erg s-1; this is above the luminosity expected by single high mass X-ray binaries (HMXBs), thus it may be either a collection of HMXBs or an intermediate mass black hole (≥80 M ).
47

A Chemical Composition Survey of the Iron-complex Globular Cluster NGC 6273 (M19)

Johnson, Christian I., Caldwell, Nelson, Rich, R. Michael, Mateo, Mario, Bailey, III, John I., Clarkson, William I., Olszewski, Edward W., Walker, Matthew G. 17 February 2017 (has links)
Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this "iron-complex" cluster class, and we provide here a chemical and kinematic analysis of > 300 red giant branch and asymptotic giant branch member stars using high-resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = -2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H] greater than or similar to -1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the sprocess must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [alpha/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster's large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to omega Cen and M54.
48

DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn

Folatelli, Gastón, Van Dyk, Schuyler D., Kuncarayakti, Hanindyo, Maeda, Keiichi, Bersten, Melina C., Nomoto, Ken’ichi, Pignata, Giuliano, Hamuy, Mario, Quimby, Robert M., Zheng, WeiKang, Filippenko, Alexei V., Clubb, Kelsey I., Smith, Nathan, Elias-Rosa, Nancy, Foley, Ryan J., Miller, Adam A. 06 July 2016 (has links)
Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope observations of the SN site similar to 740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, implying that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.
49

A CONSTRAINT ON THE FORMATION TIMESCALE OF THE YOUNG OPEN CLUSTER NGC 2264: LITHIUM ABUNDANCE OF PRE-MAIN SEQUENCE STARS

Lim, Beomdu, Sung, Hwankyung, Kim, Jinyoung S., Bessell, Michael S., Hwang, Narae, Park, Byeong-Gon 02 November 2016 (has links)
The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500 < T-eff [K] <= 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A(Li)= 3.2 +/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.
50

THE YOUNG AND BRIGHT TYPE IA SUPERNOVA ASASSN-14lp: DISCOVERY, EARLY-TIME OBSERVATIONS, FIRST-LIGHT TIME, DISTANCE TO NGC 4666, AND PROGENITOR CONSTRAINTS

Shappee, B. J., Piro, A. L., Holoien, T. W.-S., Prieto, J. L., Contreras, C., Itagaki, K., Burns, C. R., Kochanek, C. S., Stanek, K. Z., Alper, E., Basu, U., Beacom, J. F., Bersier, D., Brimacombe, J., Conseil, E., Danilet, A. B., Dong, Subo, Falco, E., Grupe, D., Hsiao, E. Y., Kiyota, S., Morrell, N., Nicolas, J., Phillips, M. M., Pojmanski, G., Simonian, G., Stritzinger, M., Szczygieł, D. M., Taddia, F., Thompson, T. A., Thorstensen, J., Wagner, M. R., Woźniak, P. R. 27 July 2016 (has links)
On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-141p just similar to 2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-141p went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-141p for more than 100 days. We find that ASASSN-141p had a broad light curve (Delta m(15) (B) = 0.80 +/- 0.05), a B-band maximum at 2457015.82 +/- 0.03, a rise time of 16.941(-0.10)(+0.11) days, and moderate host-galaxy extinction (E (B - V)host = 0.33 +/- 0.06). Using ASASSN-141p, we derive a distance modulus for NGC 4666 of mu = 30.8 +/- 0.2, corresponding to a distance of 14.7 +/- 1.5 Mpc. However, adding ASASSN-141p to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 RG(circle dot).

Page generated in 0.0258 seconds