• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 22
  • 10
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 110
  • 38
  • 35
  • 19
  • 14
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Mathematical modelling of acetaminophen induced hepatotoxicity

Reddyhoff, Dennis January 2016 (has links)
Acetaminophen, known as paracetamol in the UK and Tylenol in the United States, is a widespread and commonly used painkiller all over the world. Taken in large enough doses, however, it can cause fatal liver damage. In the U.S., 56000 people are admitted to hospital each year due to acetaminophen overdose and its related effects, at great cost to healthcare services. In this thesis we present a number of different models of acetaminophen metabolism and toxicity. Previously, models of acetaminophen toxicity have been complex and due to this complexity, do not lend themselves well to more advanced mathematical analysis such as the perturbation analysis presented later in this thesis. We begin with a simple model of acetaminophen metabolism, studying a single liver cell and performing numerical and sensitivity analysis to further understand the most important mechanisms and pathways of the model. Through this we identify key parameters that affect the total toxicity in our model. We then proceed to perform singular perturbation analysis, studying the behaviour of the model over different timescales, finding a number of key timescales for the depletion and subsequent recovery of various cofactors as well as critical dose above which we see toxicity occurring. Later in the thesis, this model is used to model metabolism in a spheroid cell culture, examining the difference spatial effects have on metabolism across a 3D cell culture. We then present a more complex model, examining the difference the addition of an adaptive response to acetaminophen overdose from the Nrf2 signalling pathway, has on our results. We aim to reproduce an unexplained result in the experimental data of our colleagues, and so analyse the steady states of our model when subjected to an infused dose, rather than a bolus one. We identify another critical dose which leads to GSH depletion in the infused dose case and find that Nrf2 adaptation decreases toxicity and model sensitivity. This model is then used as part of a whole-body PBPK model, exploring the effects that the distribution of the drug across the bloodstream and different organs has. We explore the affects of that a delay in up-regulation from the Nrf2 pathway has on the model, and find that with rescaled parameters we can qualitatively reproduce the results of our collaborators. Finally, we present the results of in vitro work that we have undertaken, the aim of which was to find new parameters for the model in human hepatocytes, rather than from rodent models, and find a new value for a parameter in our model from human cell lines.
62

Alcoholic Liver Disease: From CYP2E1 to CYP2A5

Leung, Tung M., Lu, Yongke 01 August 2017 (has links)
This article reviews recent studies on CYP2E1-mediated alcoholic liver injury, the induction of CYP2A5 by alcohol and the mechanism for this upregulation, especially the permissive role of CYP2E1 in the induction of CYP2A5 by alcohol and the CYP2E1-ROS-Nrf2 pathway, and protective effects of CYP2A5 against ethanol-induced oxidative liver injury. Ethanol can induce CYP2E1, an active generator of reactive oxygen species (ROS), and CYP2E1 is a contributing factor for alcoholinduced oxidative liver injury. CYP2A5, another isoform of cytochrome P450, can also be induced by ethanol. Chronic feeding of ethanol to wild type mice increased CYP2A5 catalytic activity, protein and mRNA levels as compared to pair-fed controls. This induction was blunted in CYP2E1 knockout (cyp2e1 -/- ) mice but was restored when human CYP2E1 was reintroduced and expressed in cyp2e1 -/- mice. Ethanol-induced CYP2E1 co-localized with CYP2A5 and preceded the elevation of CYP2A5. The antioxidants N-acetyl cysteine and vitamin C lowered the alcohol elevation of ROS and blunted the alcohol induction of CYP2A5, but not CYP2E1, suggesting ROS play a novel role in the crosstalk between CYP2E1 and CYP2A5. The antioxidants blocked the activation of Nrf2, a transcription factor known to upregulate expression of CYP2A5. When alcohol-induced liver injury was enhanced in Nrf2 knockout (Nrf2 -/- ) mice, alcohol elevation of CYP2A5 but not CYP2E1 was also lower in Nrf2 -/- mice. CYP2A5 knockout (cyp2a5 -/- ) mice exhibited an enhanced alcoholic liver injury compared with WT mice as indicated by serum ALT, steatosis and necroinflammation. Alcohol-induced hyperglycemia were observed in cyp2a5 -/- mice but not in WT mice.
63

Mechanotransduction in Living Bone: Effects of the Keap1-Nrf2 Pathway

Priddy, Carlie 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Keap1-Nrf2 pathway regulates a wide range of cytoprotective genes, and has been found to serve a protective and beneficial role in many body systems. There is limited information available, however, about its role in bone homeostasis. While Nrf2 activation has been suggested as an effective method of increasing bone mass and quality, there have been conflicting reports which associate Keap1 deficiency with detrimental phenotypes. As Keap1 deletion is a common method of Nrf2 activation, further study should address the impacts of various methods of regulating Nrf2 expression. Also, little research has been conducted on the specific pathways by which Nrf2 activation improves bone quality. In this study, the effects of alterations to Nrf2 activation levels were explored in two specific and varied scenarios. In the first experiment, moderate Nrf2 activation was achieved via partial deletion of its sequestering protein, Keap1, in an aging mouse model. The hypothesis tested here is that moderate Nrf2 activation improves bone quality by affecting bone metabolism and response to mechanical loading. The results of this first experiment suggest a subtle, sex-specific effect of moderate Nrf2 activation in aging mice which improves specific indices of bone quality to varying degrees, but does not affect loading-induced bone formation. It is likely that the overwhelming phenotypic impacts associated with aging or the systemic effects of global Keap1 deficiency may increase the difficulty in parsing out significant effects that can be attributed solely to Nrf2 activation. In the second experiment, a cell-specific knockout of Nrf2 in the osteocytes was achieved using a Cre/Lox breeding system. The hypothesis tested here is that osteocyte-specific deletion of Nrf2 impairs bone quality by affecting bone metabolism and response to mechanical loading. The results of this experiment suggest an important role of Nrf2 in osteocyte function which improves certain indices of bone quality, which impacts male and female bones in different 7 ways, but did not significantly impact loading-induced bone formation. Further studies should modify the method of Nrf2 activation in an effort to refine the animal model, allowing the effects of Nrf2 to be isolated from the potential systemic effects of Keap1 deletion. Future studies should also utilize other conditional knockout models to elucidate the effects of Nrf2 in other specific cell types.
64

The Roles of Danio Rerio Nrf2 Paralogs in Response to Oxidative Stress in the Pancreatic Beta Cell

Doszpoly, Agnes 06 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Oxidative stress can disrupt cellular homeostasis, leading to cellular dysfunction and apoptosis. The Nrf2 transcription factor regulates the antioxidant response in cells by binding to antioxidant response elements (ARE) in DNA and activating genes of enzymes that combat oxidative stress. During the pathogenesis of diabetes mellitus (DM), β-cells are exposed to increased amounts of reactive oxygen species (ROS) that cause oxidative stress. Zebrafish (ZF) are excellent models for studying the dynamic mechanisms associated with DM pathogenesis, and we recently developed a ZF model of β-cell apoptosis caused by ROS. Two paralogs of Nrf2 have been identified in ZF, Nrf2a and Nrf2b, but their roles in pancreas development and/or β-cell survival are unknown. To investigate their roles, Nrf2a and Nrf2b antisense morpholinos (MO) were injected into Day 0 ZF embryos and analyzed over time. While Nrf2a MO showed no obvious phenotypes compared to WT, Nrf2b MO exhibited reduced pancreas size and islets with disrupted morphology. Ins:NTR Nrf2a MO showed reduced β-cell loss upon exposure to Metronidazole (MTZ) under generation of ROS compared to WT. Sequence analysis of ZF nrf2b in 3-day post-fertilization (dpf) embryos revealed a novel splice variant containing an additional exon that has not been described. Further investigation of Nrf2a and Nrf2b is likely to yield additional insights regarding the function and regulation of the NRF2-signaling pathway and their roles in β-cell protection under oxidative stress.
65

脂肪酸生合成系によるHBV生活環制御機構の解析

岡村, 瞳 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第21227号 / 生博第396号 / 新制||生||52(附属図書館) / 京都大学大学院生命科学研究科高次生命科学専攻 / (主査)教授 朝長 啓造, 教授 米原 伸, 教授 千坂 修 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
66

Energetics and inhibition of the KEAP1/NRF2 protein-protein interaction interface

Zhong, Mengqi 08 December 2017 (has links)
Protein-protein interactions (PPI) represent a challenging target class in contemporary small molecule drug discovery. The difficulty arises because PPI sites are structurally and physicochemically different from conventional drug binding sites. Moreover, we currently lack a good understanding of the druggability of PPI targets: that is, how the structure and properties of a PPI interface site relates to the properties of small molecules that can bind to that site with high affinity. Efforts to achieve potent drug-like small molecule inhibitors of PPI interfaces, involving a wide range targets, historically have largely been unsuccessful, leading to the conclusion that new inhibitor chemotypes are needed to inhibit this class of target. In this thesis, I describe the application of two approaches to identify inhibitors of the PPI interface between Kelch-like ECH associated protein 1 (KEAP1) and Nuclear factor (erythroid-derived 2)-like 2 (Nrf2): (i) screening a library of synthetic macrocycles, and (ii) fragment-based lead discovery. I validate and characterize the hit compounds obtained. In the case of the fragment hits, I investigate what features of the compounds are required for binding to the target (Chapter Two). In parallel, I investigate the structure of the hot spot ensemble at the KEAP1/Nrf2 binding interface using three complementary methods: alanine scanning mutagenesis, fragment screening, and in silico probe mapping using the FTMap algorithm (Chapter Three). This analysis brings insight into the druggability of KEAP1, and advances our understanding of the utility and limitations of those three widely used methods for characterizing the hot spot ensembles at PPI interfaces (Chapter Three). Finally, to gain additional insight into the energetics of KEAP1/Nrf2 binding, I probe the additivity of combinations of alanine mutants (Chapter Four). I use the results to propose a quantitative approach to categorizing the various degrees of additivity that can be observed at PPI interfaces, and discuss the possible structural basis for these behaviors. The model potentially provides a more general framework for understanding the binding energetics at PPI interfaces using combinations of mutations.
67

Real-Time Imaging and Measurement of Compartmentalized Redox Shifts Using Novel Redox-Sensitive Biosensors: Implications in Developmental Toxicology

Davies, Brandon Mitchell 07 April 2023 (has links) (PDF)
Glutathione (GSH) is a small antioxidant in the body and exists in large quantities compared to other antioxidants. The GSH redox state (Eh) helps developmental processes, however, when the GSH Eh is disrupted, cells may undergo significantly poor developmental pathways, possibly leading to long-lasting damages. Similarly, NADPH and Thioredoxin redox states can have a major impact on cellular function, viability, and response to both endogenous and exogenous toxicants. Subcellular, compartmentalized redox environments during normal or perturbed situations, specifically in the cytosol, mitochondria, and nucleus, are not well understood. Here, using the P19 neurogenesis model of cellular differentiation, the kinetics of subcellular H2O2 availability and GSH/GSSG and NADPH/NADP+ redox shifts were evaluated following oxidant exposure. Additionally, modified mouse embryonic fibroblasts (MEFs) were used to observe redox changes and protective mechanisms when major antioxidative pathways are inhibited, mainly those involving the GSH/GSSG and Trxred/Trxox pathways. Overall, treated undifferentiated cells showed a greater degree and duration of both H2O2 availability and GSH/GSSG and NADPH/NADP+ disruption throughout all compartments than differentiated neurons. Pretreatment with an Nrf2 inducer prevented H2O2-induced effects in all compartments of undifferentiated cells. Additionally, MEF cells without either GSH or Trx showed a greater degree and duration of GSH/GSSG and Trxred/Trxox disruption throughout the cytosol and nucleus when compared to normal functioning cells. Disruption of redox-sensitive developmental pathways is likely stage-specific, where cells that are less differentiated and/or are actively differentiating are most affected. Undifferentiated cells are more susceptible to oxidant-induced redox dysregulation but are protected through prior Nrf2 induction, which appears to preserve developmental programs and diminish the potential for poor developmental outcomes. The GSH and Trx antioxidant pathways converge to protect the cell, while cells that are missing one pathway or the other may undergo damaging developmental outcomes.
68

Reduzierte Säuretoleranz in ösophagealen Adenokarzinomzellen durch Aktivierung des Nrf2/Keap1 Signalwegs

Storz, Lucie 06 December 2023 (has links)
Die Inzidenz des ösophagealen Adenokarzinoms (EAC) ist in den letzten Jahrzehnten in Ländern mit hohem durchschnittlichem Einkommen gestiegen, ohne dass sich die Prognose dieser Erkrankung wesentlich verbessert hat. Der größte Teil der EAC wird erst in fortgeschrittenem Stadium diagnostiziert. Bei bereits fortgeschrittenen, aber noch operablen Karzinomen muss zusätzlich zur Ösophagusresektion noch eine perioperative Chemotherapie durchgeführt werden, bei welcher das FLOT-Schema angewendet wird. Dabei bekommen die Patient:innen die Chemotherapeutika 5-Fluoruracil, Oxaliplatin und Docetaxel und Leucovorin. In diesen Fällen liegt das 3-Jahres-Überleben trotz der sehr belastenden Therapie nur bei 57%. Auch bei bereits inoperabel fortgeschrittenen Karzinomen kommen in palliativer Intention eine (Poly-)Chemotherapie, beispielsweise mit Oxaliplatin, Cisplatin und/oder 5-Fluorouracil, und weitere symptomlindernde Maßnahmen zum Einsatz. Das Ansprechen auf die Chemotherapie ist über alle Erkrankungsstadien hinweg individuell sehr unterschiedlich und kann bisher nur schlecht vorhergesagt werden. Die Gründe des Inzidenzanstiegs des EAC sind ebenfalls noch weitgehend unklar. Wahrscheinlich spielt der Lebensstil eine entscheidende Rolle: Tabakrauchen und Übergewicht gehören zu den Hauptrisikofaktoren des EAC und begünstigen die Entstehung einer gastroösophagealen Refluxerkrankung (GERD). Die Refluxerkrankung selbst kann wiederum zu einem Barrett-Ösophagus, der Präkanzerose des EAC, führen. Dieser Progress führt auf histologischer Ebene von der Barrett-Metaplasie über die Dysplasie zum Karzinom und wird auch Barrett-Sequenz genannt. Da die GERD als Hauptrisikofaktor gilt und eine verminderte Säureproduktion des Magens durch PPI-Therapie oder eine H. pylori Infektion vor der Entstehung eines EACs schützt, ist die Untersuchung der Auswirkungen des pH-Wertes auf die ösophageale Schleimhaut von zentraler Bedeutung. Die Schleimhaut wird durch die Magensäure geschädigt und reagiert mit einer Inflammationsreaktion, welche chronifizieren kann und zur Einwanderung von Immunzellen, Zytokinfreisetzung und ROS-Akkumulation führt. Ist die Zelle einer repetitiven Säureexposition ausgesetzt, werden Signalwege aktiviert, welche vor den schädigenden Auswirkungen der ROS, der Inflammationsreaktion und vor Apoptose schützen. Bei langfristiger dauerhafter Aktivierung dieser Signalwege wird der Zellmetabolismus protumorigen verändert und Mutationen akkumulieren, ohne dass sie repariert werden oder die Zelle stirbt. Hält dieser Ausnahmezustand über lange Zeit an erhöht sich das Risiko für eine Barrett-Metaplasie und eine Progression zum EAC. Die durch den Reflux von Magensäure hervorgerufenen molekularen Veränderungen des Nrf2- und NFκB-Signalwegs über die verschiedenen Stadien der Entwicklung des EAC sind Gegenstand dieser Arbeit. Der Nrf2-Signalweg wird durch zellulären und oxidativen Stress aktiviert und führt über die Aktivierung der ARE-Regionen in der DNA zur verstärkten Transkription verschiedener Enzyme. Dabei wird unter anderem die Expression von Enzymen aller drei Phasen der Biotransformation, für Schlüsselenzyme des Glukose-, Lipid- und Aminosäurestoffwechsels und der Redox-Homöostase hochreguliert. In gesunden Zellen führt dies zum Schutz vor dem Absterben durch externe Stressoren. Ist der Nrf2-Signalweg jedoch dauerhaft aktiv, führt er zur Reprogrammierung des Zellmetabolismus und begünstigt so die Entstehung von Krebs. Der NFκB-Signalweg ist einer der wichtigsten Signalwege für die Regulierung von Zellstoffwechsel, Inflammationsreaktionen und Apoptose. Die erhöhte Expression von NFκB wurde bereits in mehreren Krebsarten, so auch im EAC, nachgewiesen. Der Mechanismus der Inflammation ist ebenfalls in die Progression der Barrett-Sequenz involviert. Um die Auswirkungen von Säure auf Zellen der ösophagealen Schleimhaut in verschieden Stadien der Krebsentstehung detaillierter zu untersuchen, wurde ein in vitro Modell aus sechs immortalisierten Zelllinien genutzt, welches die Barrett-Sequenz abbilden soll. Zwei der Zelllinien repräsentieren gesunde ösophageale Schleimhaut (EPC1 und EPC2), eine repräsentiert die Metaplasie (CP-A), eine die Dysplasie (CP-B) und weitere zwei Zelllinien stammen von Patient:innen mit EAC in verschiedenen Stadien (OE33 im UICC Stadium IIa und OE19 im UICC Stadium III). Zusätzlich kam ein 3D-Zellkulturmodell zum Einsatz, bei welchem EPC2 als Epithelzellschicht auf einer Schicht aus Fibroblasten in Matrigel kultiviert und anschließend histologisch aufgearbeitet und gefärbt wurden. Der Reflux von Magensäure und die damit einhergehende Veränderung des Umgebungsmilieus der Zellen wurde durch Ansäuern des Zellkulturmediums mit Salzsäure simuliert. Anhand dieses Modells konnte die Reaktion auf saure pH-Werte in verschiedenen Refluxsimulationsexperimenten untersucht werden. Sowohl die Viabilität der Zelllinien als auch die Aktivität des Nrf2- und NFκB-Signalwegs unterschieden sich dabei deutlich. Das Überleben der Zellen unter Behandlung mit saurem Medium ist grundsätzlich abhängig von der Expositionsdauer und dem pH-Wert. Die Zelllinien in einem fortgeschrittenen Stadium der Barrett-Sequenz zeigten zudem im Vergleich ein besseres Überleben in der Refluxsimulation und sind resistenter gegenüber sauren pH-Werten als die Zelllinien, welche gesunder Schleimhaut entstammen. In 3D Kulturen wird die Epithelschicht histologisch sichtbar durch die Refluxsimulation geschädigt. Die Genexpression von Nrf2 selbst und seinem Downstreamtarget HO1 konnte mittels qPCR für die Zelllinien bzw. Immunhistochemie gegen HO1 für die 3D-Kulturen gezeigt werden. Bei den physiologischen und meta- bzw. dysplastischen Zelllinien zeigte sich keine Veränderung der Nrf2-Expression nach einer zweitägigen Refluxsimulation. Die Expression von HO1 stieg jedoch bei allen Zelllinien an. In histologischen Schnitten der 3D-Kultur mit EPC2 kann im Vergleich zur Kontrolle ebenfalls eine Hochregulation des Nrf2-Downstream-Moleküls HO1 gezeigt werden. Dieser HO1-Anstieg spricht für eine normale Aktivierung des Nrf2-Signalweges nach einem auslösenden Ereignis, die noch nicht zu einer dauerhaften Erhöhung der Nrf2-Expression führt. In den beiden EAC-Zelllinien wurde die Aktivität des Nrf2-Signalweges nach Säurestimulation zusätzlich auf weiteren Ebenen untersucht. Die Konzentration von nukleärem Nrf2 konnte mittels Western Blot bestimmt werden und die Transkriptionsaktivität in ARE wurde mittels Luciferase-Assay nachgewiesen. Die Aktivierung des NFκB-Signalweges wurde ebenfalls mit Western Blots untersucht. Bei der Zelllinie OE33 im UICC-Stadium II steigen sowohl die nukleäre Nrf2- Konzentration als auch die Luciferase-Aktivität nach der Säurestimulation an. Auch die Nrf2- und die HO1-Expression waren im Vergleich zur Kontrolle signifikant erhöht. Die nukleäre NFκB-Konzentration war nach der Refluxsimulation stark erhöht. Bei der Zelllinie OE19 im UICC-Stadium III konnte nach der Säurestimulation ebenfalls eine signifikante Konzentrationserhöhung von Nrf2 im Zellkern nachgewiesen werden. Die mittels Luciferase-Assay untersuchte ARE-Aktivität und das Expressionslevel von Nrf2 und HO1 im Vergleich zur Kontrolle zeigten jedoch keine Veränderung. Die nukleäre NFκB-Konzentration war zwar signifikant erhöht, der Anstieg fiel jedoch deutlich geringer aus als bei OE33 Zellen. Die beiden EAC-Zelllinien wurden außerdem nach der Behandlung mit 5-Fluorouracil untersucht. Die Zelllinie OE19 ist resistent gegenüber den beiden zur Behandlung des EAC eingesetzten Chemotherapeutika 5-FU und Cisplatin. Auch eine Säureexposition ändert bei OE19 nichts an der Resistenz gegenüber 5-FU. Während bei OE33 in normalem Kulturmedium die Zellviabilität unter 5-FU deutlich sank, zeigte sie sich bei niedrigeren pH-Werten fast unverändert, so dass der Effekt des Chemotherapeutikums nahezu aufgehoben wurde. Ein Erklärungsansatz für die unterschiedliche Reaktion der beiden Zelllinien könnte sein, dass OE19 im Stadium schon weiter fortgeschritten ist als OE33. Durch den stark veränderten Krebszellmetabolismus ist die bereits maximale Aktivierung der beiden Signalwege wahrscheinlich, sodass keine Aktivierungsreserve vorhanden ist. Nrf2 wird zwar von Keap1 abgelöst und gelangt in den Zellkern, hat aber auf die untersuchten Downstreamtargets keinen weiter steigernden Effekt. Der Schutz der maximal aktivierten Signalwege vor ROS und Apoptose ist so effektiv, dass die Zellen bereits gegen 5-FU resistent sind. Bei OE33 werden jedoch durch Säurestimulation der Nrf2- und NFκB-Signalweg stark aktiviert, was in diesem Erklärungsansatz zu einem besseren Schutz der Zellen und zu einer erhöhten Chemoresistenz in saurer Umgebung führen würde.
69

Regulation of NFkappaB-Mediated Inflammation By Green Tea in Obese Models of Nonalcoholic Steatohepatitis

Li, Jinhui 28 July 2017 (has links)
No description available.
70

Galactomyces Ferment Filtrate Suppresses Melanization and Oxidative Stress in Epidermal Melanocytes

Woolridge Cooper, JàNay K., B.S. 04 September 2018 (has links)
No description available.

Page generated in 0.0233 seconds