• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 503
  • 157
  • 114
  • 86
  • 25
  • 20
  • 15
  • 9
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1180
  • 201
  • 167
  • 109
  • 101
  • 98
  • 94
  • 94
  • 92
  • 91
  • 89
  • 87
  • 87
  • 82
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

The ultra-filtration of macromolecules with different conformations and configurations through nanopores. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Chapter 1 briefly introduces the theoretical background of how applications and lists some of resent research progresses in this area. Polymer with various configurations and conformations pass through nanopores; including polymer linear chains, stars polymer, branched polymers, polymer micelles are introduced. Among them, the de Gennes and Brochard-Wyart's predictions of polymer linear and star chains passing through nanopores are emphasized, in which they predicted that qc of linear chain is qc ≃ kBT/(3pieta), where kB, T and eta are the Boltzmann constant, the absolutely temperature, and the viscosity of solvent, respectively, independent of both the chain length and the pore size; and for star chains passing through nanopores, there exist a optimal entering arm numbers, namely, the star chains passing through nanopores. / Chapter 2 details basic theory of static and dynamic laser light scattering (LLS), including its instrumentation and our ultrafiltration setup. / Chapter 3 briefly introduces the sample preparation, including the history and mechanism of anionic living polymerization, as well as how we used a novel home-made set-up to prepare linear polystyrene with different chain lengths and star polystyrene with various arm numbers and lengths. / Chapter 4 summarizes our measured critical flow rates (qc) of linear polymer chains with different lengths for nanopores with different sizes, since the flow rate is directly related to the hydrodynamic force, we have developed a sensitive method (down to tens fN) to directly assess how much the hydrodynamic force (Fh) is required to overcome the weak entropy elasticity and stretch individual coiled chains in solution. Our method is completely different from the using existing optical tweezers or AFM, because they measure the relatively stronger enthalpy elasticity. Our results confirm that qc is indeed independent of the chain length, but decreases as the pore size increases. The value of qc is ∼10--200 times smaller than kBT/(3pieta). Such a discrepancy has been attributed to the rough assumption made by de Gennes and his coworkers; namely, each chain segment "blob" confined inside the pore is not a hard sphere so that the effective length along the flow direction is much longer than the pore diameter. Finally, using the solution temperature, we varied the chain conformation, our result shows that q c has a minimum which is near, but not exactly located at the theta temperature, might leading to a better way to determine the true ideal state of a polymer solution, at which all viral coefficients, not only the second vanish. / Chapter 5 uses polymer solutions made of different mixtures of linear and star chains, we have demonstrated that flushing these solution mixtures through a nanopore with a properly chosen flow rate can effectively and cleanly separate linear and star chains no matter whether linear chains are larger or smaller than star chains. / Chapter 6 further investigates how star-like polystyrene pass through a given nanopore under the flow field. Star polystyrene chains with different arm lengths (LA) and numbers (f) passing through a nanopore (20 nm) under an elongational flow field was investigated in terms of the flow-rate dependent relative retention ((C0 - C)/C0), where C 0 and C are the polymer concentrations before and after the ultrafiltration. Our results reveal that for a given arm length (LA), the critical flow rate (qc,star), below which star chains are blocked, dramatically increases with the total arm numbers (f); but for a given f, is nearly independent on LA, contradictory to the previous prediction made by de Gennes and Brochard-Wyart. We have revised their theory in the region fin < fout and also accounted for the effective length of each blob, where fin and fout are the numbers of arms inside and outside the pore, respectively. In the revision, we show that qc,star is indeed independent of LA but related to f and f in in two different ways, depending on whether fin ≤ f/2 or ≥ f/2. A comparison of our experimental and calculated results reveals that most of star chains pass through the nanopores with fin ∼ f/2. Further study of the temperature dependent (C0 - C)/C 0 of polystyrene in cyclohexane reveals that there exists a minimum of qc,star at ∼38 °C, close to its theta temperature (-34.5 °C). / This Ph. D. thesis presents our study on the ultrafiltration of polymers with different configurations and conformations; namly, theoretically, the passing of polymer chains through a nanopore under an elongational flow filed has been studied for years, but experimental studies are rare because of two following reasons: (1) lacks a precise method to investigate how individual single polymer chain pass through a nanopore; (2) it is difficult, if not impossible, to obtain a set of polymer samples with a narrow molar mass distribution and a uniform structures; except for linear chains. The central question in this study is to find the critical (minimum) flow rate (qc) for each kind of chains, at which the chains can pass through a given nanopore. A comparison of the measured and calculated qc leads to a better understanding how different chains are deformed, stretched and pulled through a nanopore. We have developed a novel method of combinating static and dynamic laser light scattering (LLS) to precisely measure the relative retention concentration ((C0 - C)/C0). / Ge, Hui. / Adviser: Chi Wu. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
302

Characterization of magnetic nanocomposite thin films for high density recording prepared by pulsed filtered vacuum arc deposition. / CUHK electronic theses & dissertations collection

January 2004 (has links)
by Chiah Man Fat. / "March 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
303

Routes to control the crystal structure, morphology and aligned growth of quasi-one-dimensional Zn-Cd-Se nanostructures by metalorganic chemical vapor deposition. / 通過金屬有機物化學氣相沉積法合成晶體結構, 形貌及生長取向性可控的硒鋅鎘族准一維納米結構 / CUHK electronic theses & dissertations collection / Routes to control the crystal structure, morphology and aligned growth of quasi-one-dimensional Zn-Cd-Se nanostructures by metalorganic chemical vapor deposition. / Tong guo jin shu you ji wu hua xue qi xiang chen ji fa he cheng jing ti jie gou, xing mao ji sheng chang qu xiang xing ke kong de xi xin ge zu zhun yi wei na mi jie gou

January 2007 (has links)
Studying quasi-one-dimensional (1D) semiconductor nanostructures is an attractive and active research field in nanoscience and nanotechnology. Their controllable growth is the foundation for observing novel properties and fabricating useful nano-devices and is also a challenge. / We believe that our work in perfecting the fabrication of aligned 1D semiconductor nanostructures and control of their morphology, crystal structure and orientation will shed more light on the understanding on 1D physics and advancement in nanotechnology. / We have studied the control of the structure, morphology and alignment of Zn-Cd-Se 1D nanostructures by fine tuning their growth conditions and judiciously choosing substrates in a metalorganic chemical vapor deposition (MOCVD) reactor. We found that the products are zincblende structured nanoneedles at relatively low temperatures and pressures, and wurtzite structured nanowires at high temperatures and pressures. We have fabricated aligned 1D nanostructures of different chemical compositions by exploiting the epitaxial relationship between the lattices of Zn-Cd-Se system and GaAs substrate. From the systematic studies of the orientations of the aligned samples, we demonstrated that they can be controlled by the crystallographic surface of the substrate. We also found that the orientation can be affected by the growth temperature. Three growth models are suggested to explain the aligned growth for zincblende and wurtzite 1D nanostructures and complex shaped three-bladed nanoswords. Observations and angular measurements of the orientations and growth directions by electron microscopy and analyses by pole stereographs offer supporting evidences for the models. Polarized photoluminescence studies of individual CdSe nanowires obtained under controlled growth have been achieved. / Liu, Zhuang = 通過金屬有機物化學氣相沉積法合成晶體結構, 形貌及生長取向性可控的硒鋅鎘族准一維納米結構 / 劉壯. / "July 2007." / Adviser: Sui Kong Hark. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 1062. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307. / Liu, Zhuang = Tong guo jin shu you ji wu hua xue qi xiang chen ji fa he cheng jing ti jie gou, xing mao ji sheng chang qu xiang xing ke kong de xi xin ge zu zhun yi wei na mi jie gou / Liu Zhuang.
304

Terahertz nonlinear optical response of armchair graphene nanoribbons

Wang, Yichao 01 August 2016 (has links)
It has become increasingly apparent that the future of next generation of electronic devices can and will rely on graphene nanoribbons. Graphene nanoribbons and sister structures showcase several key properties that can address the emerging need of terahertz science and technology, and break through the many technological limits on conventional semiconductor electronics operating in the terahertz spectrum. In this thesis, we focus on the study of the terahertz nonlinear optical response of metallic armchair graphene nanoribbons and sister structures using a k.p model and time dependent perturbation theory. We find that these nanoribbons exhibit a stronger interband optical response, and a smaller critical field strength (of the order of 10 kV/m) than does 2D single layer graphene. We demonstrate that finite ribbon size, spatial profile of the applied terahertz radiation field, polarization of the applied terahertz radiation, a small band gap opening, and application of a superlattice potential are several ways to tune the strong terahertz nonlinear optical response of metallic armchair graphene nanoribbons. The major contributions of this thesis include: 1) developes of a simpler method compared to other sophisticated methods of the terahertz nonlinear optical interband response of metallic armchair graphene nanoribbons; 2) extends the method in the characterization of various quantum size effects, elliptically polarized radiation field, small gap opening and superlattice on the terahertz optical response of these nanoribbons; 3) The versatility of the tunability showed in the terahertz nonlinear response of metallic armchair nanoribbons and sister structures will help advance the development of the nonlinear terahertz armchair graphene nanoribbon opto-electronic and photonic technology.
305

Desenvolvimento de nanoestruturas em superfície metálica (prata) com laser pulsado femtossegundo para aumento de fluorescência / Formation of silver nanostructures using femtosecond pulsed laser to metal enhanced fluorescence

Mattos, Vicente Silva 19 July 2019 (has links)
Fluorescência é uma técnica bastante utilizada para diagnóstico, análise de materiais e tecidos biológicos, técnicas forenses entre outras. Neste contexto, métodos para detectar sinais de moléculas fluorescentes com maior sensibilidade e especificidade têm sido investigados, principalmente para detecção de moléculas em concentrações extremamente baixas. Dada a importância do tema, o presente trabalho, de caráter inovador, busca gerar nanoestruturas em prata com laser pulsado femtossegundo, capazes de aumentar níveis de fluorescência de moléculas próximas às nanoestruturas. Foi utilizado um laser Libra femtossegundo de 450 mW, 1 KHz de frequência e comprimento de onda de 850 nm da Coherent para a criação de nanoestruturas em prata pura polida. Diferentes parâmetros de marcação resultaram em variados perfis de nanoestruturas, tanto periódicas e regulares, quanto aglomerados caóticos de esferas nanométricas pela superfície marcada, onde as estruturas apresentavam periodicidade de aproximadamente 500 nm e as esferas possuem tamanhos variando de 50 a 500 nm, quando avaliadas por Microscopia Eletrônica de Varredura (MEV) e Microscopia de força atômica (AFM). O efeito de proximidade destas nanoestruturas caóticas com a adição de um fluoróforo (Protoporfirina IX à 0,5 μg/ml em etanol) proporcionou um aumento do sinal de fluorescência, quando comparado à uma região não marcada, quando avaliado por microscopia confocal de fluorescêcia. Portanto, este aumento de sinal foi de aproximadamente 25 vezes para excitação de um fóton (405 nm) e cerca de 300 vezes para a excitação de dois fótons (800 nm). / Fluorescence is a widely applied technique in diagnosis, material and biological tissue analysis, forensic sciences and other areas. Tools for enhancing the fluorescence signal with high sensitivity and specificity are needed to detect trace levels of target molecules. This innovative project aims to create nanostructures on pure silver using femtosecond pulsed laser to enhance the fluorescence signal emission from molecules near that interface. It was used a femtosecond Libra laser of 450 mW, 1KHz of frequency and wavelength of 850 nm from Coherent to form the nanostructures on polished pure silver. The nanostructures were obtained on different shapes onto the surfaces, from periodic nanostructures having ~500 nm of periodicity, to chaotic agglomerates of silver spheres with size ranging from 50 to 500 nm, when analyzed with Scanning Electron Microscopy and Atomic Force Microscopy. The effect of proximity between the chaotic structures and the fluorophore (Protoporphyrin IX at 0,5 μg/ml in ethanol) resulted in an increase of 25 times the fluorescence signal when used one photon excitation (405 nm) and enhancement of 300 times using two photon excitation.
306

Optical Spectroscopy of Two-Dimensional Superatomic Semiconductors and Magnetic Materials

Lee, Kihong January 2019 (has links)
Since the first discovery of atomically thin sheets of carbon, two-dimensional (2D) materials have captured the interest from scientific community to expand the understanding in fundamental physics and chemistry at low dimensional systems. With extraordinary phenomena only possible at atomically thin limits, there has been high demand to reveal new and unique 2D materials and manipulate their structures and properties. Structural tunability of superatomic solids motivates us to control dimentionality of the materials and construct layered structures which could be exfoliated to 2D materials. The layered crystal [Co6Se8(PEt2phen)6][C60]5 can be used as a template to create a 2D C60-based material with an optical gap in mid-infrared. Re6Se8Cl2 and Mo6S3Br6, are presented as the first examples of covalently linked 2D superatomic solids built from nanoscale building blocks with hierarchical structures and semiconducting properties. We further demonstrate the emergence of hierarchical coherent phonons in a 2D superatomic semiconductor Re6Se8Cl2. Lastly, we explore complex magnetic phases in 2D ferromagnetic semiconductor CrSBr using second harmonic generation and Raman spectroscopy. 2D superatomic semiconductors and 2D magnetic materials provide additional sets of design principles to manipulate structural, electronic, phononic, and magnetic properties at the atomically thin limits. These materials hold promises as model systems to study fundamental physical principles as well as platform for applications with phonon engineering and magnetic optoelectronic devices.
307

Bio-Inspired Materials and Micro/Nanostructures Enabled by Peptides and Proteins

Swaminathan, Swathi 01 May 2015 (has links)
The development of a general approach for non-destructive chemical and biological functionalization of materials could expand opportunities for both fundamental studies and creating various device platforms. Phage display has emerged as a powerful method for selecting peptides that possess enhanced selectivity and binding affinity toward a variety of targets. In this study, a powerful yet benign approach for identifying binding motifs to materials like (Poly) dimethylsiloxane, epoxy, and (Poly) ethylenetetraphthalate and peptide nanotubes has been demonstrated via comprehensively screened phage-displayed peptides. Further, along with the development of microstructures, micropatterns and micro-molecular self-assembly, recognition with phage-displayed peptides can be specifically localized in these microstructures. In addition, the development of a facile approach for fabricating a library of precisely positioned nanostructures and microfluidic systems based on mammalian hair offers exciting opportunities in fundamental research and practical applications. The current top-down and bottom-up nanofabrication methods have been restricted in accessibility in standard labs due to their high cost and complexity. Novel fabrication methods utilizing biomimetic materials and natural proteins for large-scale nanopatterning with hierarchical assembly of functional materials have been reported. It is anticipated that these results could open up exciting opportunities in the use of peptide-recognized materials in fundamental biochemical recognition studies, as well as in applications ranging from analytical storage devices, hybrid materials, sensors, surface and interface, to cell biology.
308

Spin and charge properties of Si: P probed using ion-implanted nanostructures

McCamey, Dane Robert, Physics, Faculty of Science, UNSW January 2007 (has links)
This thesis investigates the defects, charge states and spin properties of phosphorus doped silicon, and is motivated by a number of proposals for quantum information processing (QIP) that involve using the spin or charge of individual donors in silicon as qubits. The implantation of phosphorus into silicon is investigated; specifically the ability to remove damage and activate the implanted donors. The impact of implantation on the transport properties of silicon MOSFETs at cryogenic temperatures is used to investigate the damage. Implanting phosphorus into the MOSFET channel leads to reduced electron mobility. The defect density increases linearly with implant density (??ndefect = 0.08 ?? 0.01nimplant). Silicon implantation does not show this effect, suggesting that the additional defects are ionised P donors in the channel. Implant activation for low density donors was complete for an implant density of 2 x 1012 cm2. Similar studies were undertaken on devices with a variety of dielectrics. Thermally grown SiO2 was found to have the lowest defect density of those studied, although Al2O3 deposited via atomic layer deposition was found to have properties that may be useful for the fabrication of devices with low thermal processing budgets. The as-grown defect density of the thermal silicon dioxide was found to be 2.1 ?? 0.3 x 1011 cm2. Ion implantation of nanoscale devices allowed the spin properties of a small number of phosphorus donors in silicon to be probed via electrically detected magnetic resonance. This allowed the detection of the spin resonance of as few as 100 spins. This represents an improvement in number detection of 4 orders of magnitude over previous EDMR studies of donors in silicon. EDMR was used to investigate the properties of P donors in isotopically purified 28Si . The material had a background doping level too high to detect small numbers of spins, however, the narrow linewidth of the phosphorus resonance confirm that the isotopic purity is greater than 0.999. A proof-of-principle demonstration of pulsed EDMR of ion-implanted donors in silicon is presented. The spin dependent transient that results from manipulating the donor spins via pulsed ESR is sensitive to as few as 104 donors, and is a required component for observation of spin Rabi oscillations by this technique.
309

Ballistic Transport in Nanostructures from First-Principles Simulations

Marzari, Nicola 01 1900 (has links)
We developed and implemented a first-principles based theory of the Landauer ballistic conductance, to determine the transport properties of nanostructures and molecular-electronics devices. Our approach starts from a quantum-mechanical description of the electronic structure of the system under consideration, performed at the density-functional theory level and using finite-temperature molecular dynamics simulations to obtain an ensemble of the most likely microscopic configurations. The extended Bloch states are then converted into maximally-localized Wannier functions to allow us to construct the Green’s function of the conductor, from which we obtain the density of states (confirming the reliability of our microscopic calculations) and the Landauer conductance. A first application is presented to the case of carbon nanotubes. / Singapore-MIT Alliance (SMA)
310

Ballistic Transport in Carbon Nanotubes from First-Principles Molecular Dynamics Simulations

Lee, Young-Su, Nardelli, Marco Buongiorno, Marzari, Nicola 01 1900 (has links)
We determined the Landauer ballistic conductance of pristine nanotubes at finite temperature via a novel scheme that combines ab-initio molecular dynamics, maximally-localized Wannier functions, and a tight-binding formulation of electronic transport in nanostructures. Large-scale ab-initio molecular dynamics simulations are used to obtain efficiently accurate trajectories in phase space. The extended Bloch orbitals for states along these trajectories are converted into maximally-localized orbitals, providing an exact mapping of the ground-state electronic structure onto a short-ranged Hamiltonian. Green's functions, self-energies, and ballistic conductance can then be obtained for any given configuration, and averaged over the appropriate statistical ensemble. / Singapore-MIT Alliance (SMA)

Page generated in 0.0679 seconds