• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 503
  • 157
  • 114
  • 86
  • 25
  • 20
  • 15
  • 9
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1180
  • 201
  • 167
  • 109
  • 101
  • 98
  • 94
  • 94
  • 92
  • 91
  • 89
  • 87
  • 87
  • 82
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Étude de structures sublongueur d’onde filtrantes, application à la spectroscopie d’absorption infrarouge / Subwavelength gratings for infrared spectral filtering, applied to absorption spectroscpy

Tardieu, Clément 04 November 2016 (has links)
Les nanostructures ont montré leur utilité dans diverses applications optiques. Notre intérêt s'est porté sur deux d'entre elles : le filtrage spectral et la spectroscopie d'absorption. Dans le premier cas, l'application est notamment limitée par la réjection hors de la bande passante des nanostructures filtrantes.Dans cette thèse, j'ai étudié et développé une structure membranaire composée de deux réseaux métalliques sublongueur d'onde encapsulés dans un diélectrique. Cette structure présente une extinction aux hautes longueurs d'onde qui permet d'améliorer la réjection du filtre. Un procédé de fabrication a été développé, et les caractérisations optiques ont permis de mettre en évidence expérimentalement la présence de l'extinction de la transmission.Dans le second cas, les nanoantennes classiquement utilisées nécessitent une optimisation de la structure pour chaque liaison observée et limitent le type de molécules détectables. J'ai proposé une nouvelle méthode de spectroscopie d'absorption de molécules basée sur des nanogrilles. Ces structures composées d'un réseau de barreaux diélectriques suspendus présentent une réflexion parfaite perturbée par la présence de molécules autour de ces barreaux. J'ai montré théoriquement le potentiel de cette méthode basée sur le balayage spectral de la réflexion résonante grâce à l'angle d'incidence et je l'ai comparée aux nanoantennes métalliques décrites dans la littérature.J'ai ensuite fabriqué et caractérisé des nanogrilles de deux sections différentes et montré l'impact de paramètres expérimentaux sur notre méthode de détection. / Nanostructures have demonstrated their utility in different optical applications. Our interest has focused on two of them: the spectral filtering and absorption spectroscopy. In the first case, the application is limited in particular by the rejection outside the passband of the filter nanostructures.In this thesis, I studied and developed a free-standing structure composed of two metalic subwavelength gratings encapsulated in a dielectric. This structure has an extinction at high wavelengths which improves the filter rejection. A fabricating process has been developed, and optical characterizations demonstrate experimentally the presence of the extinction of the transmission.In the second case, the nanoantennas conventionally used require optimization of the structure for each observed bond and limit the type of detectable molecules. I have proposed a new method of absorption spectroscopy of molecules based on nanorods. These structures composed of a free-standing dielectric rods array exhibit a perfect reflection disturbed by the presence of molecules around these rods. I have theoretically shown the potential of this method based on the spectral scanning reflection resonant with the incident angle and I compared to metalic nanoantennas described in the literature.Then, I fabricated and characterized nanogrilles of two different sections and showed the impact of experimental parameters on our detection method.
272

Diodes nanostructurées pour la détection infrarouge par absorption à deux photons / Nanostructured diodes for infrared detection through two photons absorption

Fix, Baptiste 01 October 2018 (has links)
Mes travaux de thèses portent sur l'étude de la photodetection infrarouge par processus d'absorption à deux photons non-dégénérés (NDTPA) dans des diodes nanostructurées à grand gap. Ce concept innovant permet en effet la détection infrarouge sans avoir recours aux systèmes de refroidissement du détecteur.Dans un premier temps, je recherche les paramètres clefs de cette étude. Pour commencer, j'étudie, théoriquement et expérimentalement, la compétition entre deux processus d'absorption sub-gap : l'absorption à deux photons, qui est un processus non linéaire du troisième ordre, et l'absorption linéaire sub-gap sur les défauts du semiconducteur (PASRH). La faible efficacité du NDTPA m'a ensuite amené à étudier des nanostructures capables de concentrer le champs lumineux dans une jonction en semiconducteur, donc d'augmenter l'efficacité absorption.Dans un second temps, je présente la conception, la fabrication en salle blanche et la caractérisation de deux générations de diodes nanostructurées pour la détection infrarouge par NDTPA. Les diodes de première génération sont des jonctions PIN en InP dont l'électrode supérieure nanostructurée est mono-résonante à 3.39 µm. J'ai vérifié leurs propriétés électrique et optique sur un banc dédié que j'ai monté. Finalement, je démontre la détection d'un flux infrarouge à température ambiante par NDTPA et avec un rapport signal sur bruit de 15. Une caractérisation du photocourant mesuré permet de déterminer que la nanostructure permet un gain de 24 sur la génération de photocourant par NDTPA.Après une analyse de cette étude et de ses difficulté, je propose et fabrique une seconde génération de diode nanostructurée résonante aux longueurs d'onde de pompe et de signal. Ce nouveau design permet d'atteindre des gains théorique de l'ordre de 1500 sur la génération de photocourant par NDTPA tout en limitant le photocourant parasite généré par PASRH.Finalement, dans un dernier volet, je présente un nouveau type de nano résonateurs à haut facteur de qualité utilisé dans le cadre des diodes de seconde génération. J'en présente un modèle analytique ainsi que ses principales propriétés. / My thesis work is focused on infrared photodetection through non-degenerated two photons absorption (NDTPA) in a nanostructured large band-gap diode. This innovative concept is an alternative scheme for infrared detection at high operating temperatures.In a first step I will search for the key parameters of this study. I start by studying, theoretically and experimentally, the competition between two sub-gap absorption processes : the NDTPA, which is a non-linear phenomena of the third order, and the linear sub-bandgap absorption on the semiconductors defects (PASRH). Steered by the intrinsically low absorption efficiency of NDTPA, I studied the amplification of photocurrent generation through the fields concentration induced by a nanostructure.In a second time, I present the computed design, the fabrication inside a clean-room and the characterisation of two generations of nanostructured diodes. The first generation diodes are PIN junctions made of InP whose nanostructured top electrodes are mono-resonant at the signal wavelength (3.39 µm). I checked their electrical and optical properties on a dedicated bench that I designed. Finaly I demonstrate an infrared detection at room temperature through NDTPA with a signal-to-noise ratio above 15. A gain of 24 on the generation of photocurrent is attributed to the nanostructure.After an analysis of this first study, I designed and fabricated a second generation of nanostructured diode which are resonant at both the signal and the pump wavelength. This new design can theoretically achieve a gain around 1500 on the generated photocurrent while keeping the parasite PASRH photocurrent under control.Finally in a last part, I study a new high-quality factor nano-resonator which has been used in the design of the second generations diodes. I present an analytical model as well as their principals properties.
273

Nanometer scale point contacting techniques for silicon Photovoltaic devices / Mise en oeuvre de procédés de contacts nanométriques pour des dispositifs photovoltaïque à base de silicium

Khoury, Rasha 20 October 2017 (has links)
Au cours de cette thèse, j’ai étudié la possibilité et les avantages d’utiliser des contacts nanométriques au-dessous de 1 µm. Des simulations analytiques et numériques ont montré que ces contacts nanométriques sont avantageux pour les cellules en silicium cristallin comme ils peuvent entrainer une résistance ohmique négligeable. Mon travail expérimental était focalisé sur le développement de ces contacts en utilisant des nanoparticules de polystyrène comme un masque. En utilisant la technique de floating transfert pour déposer les nanosphères, une monocouche dense de nanoparticules s’est formée. Cela nécessite une gravure par plasma de O2 afin de réduire la zone de couverture des NPs. Cette gravure était faite et étudiée en utilisant la technique de plasmas matriciels distribués à résonance cyclotronique électronique (MD-ECR). Une variété de techniques de créations de trous nanométriques était développée et testée dans des structures de couches minces et silicium cristallin. Des trous nanométriques étaient formés dans la couche de passivation, de SiO2 thermique, du silicium cristallin pour former des contacts nanométriques dopés. Un dopage local de bore était fait, à travers ces trous nanométriques par diffusion thermique et implantation ionique. En faisant la diffusion, le dopage local était observé par CP-AFM en mesurant des courbes de courant-tension à l’intérieur et à l’extérieur des zones dopées et en détectant des cellules solaires nanométriques. Par contre le processus de dopage local par implantation ionique a besoin d’être améliorer afin d’obtenir un résultat similaire à celui de diffusion. / The use of point contacts has made the Passivated Emitter and Rear Cell design one of the most efficient monocrystalline-silicon photovoltaic cell designs in production. The main feature of such solar cell is that the rear surface is partially contacted by periodic openings in a dielectric film that provides surface passivation. However, a trade-off between ohmic losses and surface recombination is found. Due to the technology used to locally open the contacts in the passivation layer, the distance between neighboring contacts is on the order of hundreds of microns, introducing a significant series resistance.In this work, I explore the possibility and potential advantages of using nanoscale contact openings with a pitch between 300 nm to 10 µm. Analytic and numerical simulations done during the course of this thesis have shown that such nanoscale contacts would result in negligible ohmic losses while still keeping the surface recombination velocity Seff,rear at an acceptable level, as long as the recombination velocity at the contact (Scont) is in the range from 103-105 cm/s. To achieve such contacts in a potentially cost-reducing way, my experimental work has focused on the use of polystyrene nanospheres as a sacrificial mask.The thesis is therefore divided into three sections. The first section develops and explores processes to enable the formation of such contacts using various nanosphere dispersion, thin-film deposition, and layer etching processes. The second section describes a test device using a thin-film amorphous silicon NIP diode to explore the electrical properties of the point contacts. Finally, the third section considers the application of such point contacts on crystalline silicon by exploring localized doping through the nanoholes formed.In the first section, I have explored using polystyrene nanoparticles (NPs) as a patterning mask. The first two tested NPs deposition techniques (spray-coating, spin-coating) give poorly controlled distributions of nanospheres on the surface, but with very low values of coverage. The third tested NPs deposition technique (floating transfer technique) provided a closely-packed monolayer of NPs on the surface; this process was more repeatable but necessitated an additional O2 plasma step to reduce the coverage area of the sphere. This was performed using matrix distributed electron cyclotron resonance (MD-ECR) in order to etch the NPs by performing a detailed study.The NPs have been used in two ways; by using them as a direct deposition mask or by depositing a secondary etching mask layer on top of them.In the second section of this thesis, I have tested the nanoholes as electrical point-contacts in thin-film a-Si:H devices. For low-diffusion length technologies such as thin-film silicon, the distance between contacts must be in the order of few hundred nanometers. Using spin coated 100 nm NPs of polystyrene as a sacrificial deposition mask, I could form randomly spaced contacts with an average spacing of a few hundred nanometers. A set of NIP a-Si:H solar cells, using RF-PECVD, have been deposited on the back reflector substrates formed with metallic layers covered with dielectrics having nanoholes. Their electrical characteristics were compared to the same cells done with and without a complete dielectric layer. These structures allowed me to verify that good electrical contact through the nanoholes was possible, but no enhanced performance was observed.In the third section of this thesis, I investigate the use of such nanoholes in crystalline silicon technology by the formation of passivated contacts through the nanoholes. Boron doping by both thermal diffusion and ion implantation techniques were investigated. A thermally grown oxide layer with holes was used as the doping barrier. These samples were characterized, after removing the oxide layer, by secondary electron microscopy (SEM) and conductive probe atomic force microscopy (CP-AFM).
274

Functional Noble Metal, Bimetallic And Hybrid Nanostructures By Controlled Aggregation Of Ultrafine Building Blocks

Halder, Aditi 07 1900 (has links)
Functional nanomaterials are gaining attention due to their excellent shape and size dependent optical, electrical and catalytic properties. Synthesizing nanoparticles is no longer novel with the availability of a host of synthesis protocols for a variety of shapes and sizes of particles. What is currently needed is an understanding the fundamentals of shape and size controlled synthesis to produce functional nanomaterials that is simple and general. In addition to simple metallic nanostructures, synthesizing bimetallic and hybrid nanostructures are important for applications. Instead of trying to add functionality to the preformed nanomaterials, it is advantageous to look for cost effective and general synthetic protocols that can yield bimetallic, hybrid nanostructures along with the shape and size control. In this dissertation, a novel synthetic protocol for the synthesis of ultrfine single crystalline nanowires, metallic and bimetallic nanostructures and hybrid nanostructures has been investigated. The key point of the synthesis is that all different functional nanostructures are achieved by the use of noble metal intermediates in organic medium without phase transfer reagents. The roles of capping agents, oriented attachment and aggregation phenomenon have been studied in order to understand the formation mechanisms. Along with the synthesis, formation mechanisms, the optical and catalytic properties of the functional, noble metal, bimetallic and hybrid nanostructures have been studied. The entire thesis based on the results and findings obtained from the present investigation is organized as follows: Chapter I provides a general introduction to functional nanomaterials, their properties and some general applications, along with a brief description of conventional methods for size and shape-controlled synthesis. Chapter II deals with the materials and methods which essentially gives the information about the materials used for the synthesis and the techniques utilized to characterize the materials chosen for the investigation. Chapter III presents a novel method of for synthesizing noble metals nanostructures starting from an intermediate solid phase. The method involves the direct synthesis of noble metal intermediates in organic medium without the use of any phase transfer reagent. Controlled reduction of these intermediates leads to the formation of ultrafine nanocrystallite building blocks. Controlled aggregation of the nanocrystallites under different conditions leads to the formation of different nanostructures ranging from single crystalline nanowires to porous metallic clusters. In this chapter, the details of synthesis of the intermediate phase of gold are presented. This intermediate phase is the rocksalt phase of AuCl that has been experimentally realized for the first time. Manipulation of the AuCl nanocubes leads to the formation of a variety of nanostructures of Au starting from hollow cubes to extended porous structures. Mechanistic details of the formation of the intermediate and the nanostructures are presented in this chapter. Chapter IV deals with the symmetry breaking of an FCC metal (gold) by oriented attachment of metal nanoparticles by the preferential removal of capping agent from certain facets and followed by the attachment of gold nanoparticles along those bare facets. This kind of oriented attachment leads to the formation of 1D nanostructures with high aspect ratios. In this chapter, the synthesis, characterisation, formation mechanism and optical properties of high aspect ratio, molecular scale single crystalline gold nanowires has been described. This represent the first ever successful method to produce ultrafine 1D metallic nanostructures approaching molecular dimensions. Chapter V deals with the formation of hybrid nanostructures by attaching the cubic intermediate phase to a substrate like carbon nanotubes followed by the reduction of the attached intermediates on the tubes. The Pt intermediates have been synthesized and attached on the wall of functionalized CNTs and reduced. The PtCNT nanocomposites been characterized by several spectroscopic and microscopic techniques. The electrocatalytic activity of these nanocomposites towards the methanol oxidation has also been investigated. The composites exhibit high catalytic activity and good long term performance. The presence of functional groups on the CNT surface overcomes some of the limitations of current single metal catalysts that suffer from CO poisoning. Chapter VI deals with the formation of palladium nanostructures ranging from nanoparticles to hierarchical aggregates by controlled aggregation of nanoparticles in an organic medium that is tuned by the dielectric constant of the system. A crystalline intermediate of palladium salt has been synthesized and this intermediate of palladium has been used as the precursor solution for the synthesis of palladium nanostructures. The formation mechanism of the nanoporous Pd cluster is investigated using the modified DLVO approach. The catalytic efficiency of the Pd nanostructures has been investigated using the reduction of pnitrophenol and electrocatalytic hydrogen storage as model reactions. Chapter VII discusses the possibility of achieving functional bimetallic alloys by simultaneous reduction of the cubic intermediate of two different metals with experimental evidences. The synergistic effect of the two different metals gives rise to better catalytic activity. This chapter mainly deals with the synthesis of bimetallic porous nanoclusters of goldpalladium and goldplatinum in an organic medium. Detailed microstructural and spectroscopic characterisation of the bimetallic nanoclusters has been carried out and their electrocatalytic performance, morphological stability also investigated.
275

Synthesis And Structural Characterization Of TiO2-Based Hybrid Nanostructures For Photovoltaic Applications

Mukherjee, Bratindranath 12 1900 (has links) (PDF)
Increased demand of power, limited fuel resources and environmental concerns have recently prompted a huge thrust on research areas of alternative energy and photovoltaics have been hailed as energy source for future. Particularly, third generation solar cell configurations like dye-sensitized solar cells and quantum dot Schottky barrier solar cells have drawn more attention because of their ease of processability, cheap cost with decent performance, low payback time and portability. Quantum dots are very attractive materials as sensitizers because of their size dependent bandgap tunability, increased oscillator strength and hence higher absorption coefficient, possibility of multiple exciton generation and photochemical robustness. Hence syntheses of quantum dot based hybrid nanostructures have received huge attention among researchers for using it quantum dot sensitized solar cell configuration. This dissertation can be divided in two parts. In the first part two different methods have been reported to prepare interconnected mesoporous nanostructures of wide band gap semiconductors like TiO2 and ZnO which is very important in providing high surface area for absorption or attachment of the sensitizers. In the second part, methods have been developed to establish direct contacts between quantum dots and wide bandgap substrates without molecular linkers which are expected to increase the electron injection rate from quantum dots to TiO2/ZnO. The entire thesis based on the results and findings obtained from the present investigation is organised as follows: Chapter-I provides a general introduction on the working principle of different type of solar cells and then gives a detailed description of the structure and electronic process of dye sensitised solar cells. Then, benefits of quantum dots as sensitizer over dye molecules has been discussed followed by the modification needed in case of quantum dot sensitized solar cells. Chapter-II deals with the materials and methods which essentially gives the information about the materials used for the synthesis and the techniques utilized to characterize the materials chosen for the investigation. Chapter-III describes a hybrid sol-gel combustion technique to synthesize large quantities of highly crystalline and phase-pure anatase powder in a single step. Titanium isopropoxide reacts with oleic acid to form a viscous liquid (oxocarboxoalkoxide) which undergoes non-hydrolytic polycondensation to form TiO2 during combustion. Oleylamine takes part in formation of reverse micelle which expands during combustion giving rise to porous interconnected membrane like microstructure of pore size ~5 nm, BET surface area of ~100 m2/g and porosity of ~ 48%. More importantly, this porous powder having a pre-existing network can be used to form thicker film by doctor blade technique from its paste and at the same time is expected to have better transport properties due to its less particulate nature. Chapter-IV presents a general method to prepare mesoporous structure from rod-like morphologies by partial sintering of a green pellet. Material having inherent anisotropy in their crystal structure tends to grow in a particular direction rather undergoing equiaxial growth. For instance, hexagonal ZnO and tetragonal rutile usually grow as rod-shaped particles. A loose compact of these nanorods give nanoporous morphology upon heating. Advantage of this method is the tunability of pore size by tuning the aspect ratio of the nanorods. Preparation of porous TiO2, ZnO and hydroxyapatite has been demonstrated from their corresponding nanorods. Chapter-V deals with a solvothermal based technique that has been developed for in-situ deposition of nanoparticles on any plane or curved surfaces conformally. This has been demonstrated for nanoparticles of FeCo, Au, Co, CdS on substrates like glass, mica, Si, NaCl, Al2O3 M-plane and also conformal coating of Au nanoparticles on polystyrene latex spheres. CdSe on rutile nanorods, ZnO nanorods and CNTs are promising hybrid nanostructures for third generation photovoltaics and their successful preparation has been detailed in the chapter. The mechanism proposed is based on dominant attractive sphere-plate interaction under high temperature and high autogeneous pressure condition which at reduced density and surface tension of the solvent reduces the dispersibility of the nanoparticle and allow effective spreading of the nanoparticles on the substrate. This method is also advantageous for coating of complicated geometry like inner walls of porous structures. Chapter-VI presents a method to coat chalcogenide nanoparticles on mesoporous TiO2 without any molecular linker which can enhance the electron injection rate from the chalcogenide quantum dots to TiO2. CdS, PbS can be easily synthesized through aqueous chemistry. For deposition of these sulfides, the ion layer gas absorption and reaction (IGLAR) method was modified to form uniform dense nanoparticles on anatase and ZnO surfaces. Nitrate salts of corresponding metal ions are dried directly on the semiconductor surface and instead of exposing it to H2S gas, it was treated with a concentrated sulfide solution. This introduces two competitive process i) dissolution of nitrate salt ii) formation of the metal sulfide. This dissolution step was absent when treated with H2S gas (IGLAR) and hence lead to a continuous coating. We have successfully produced CdS-TiO2 and PbS-TiO2 composites using this approach. Photoelectrochemical measurements on CdSTiO2 composites show an overall efficiency of 2.8% which is among the highest values obtained for this system demonstrating the applicability of the method to engineer interfaces to achieve high efficiency solar cells. Chapter-VI explores the combination of strategies of nanocrystal conversion chemistry with previously described sol-gel combustion technique to create dense and uniformly coated QD sensitized TiO2 electrode without compromising heat-treatment routines which is essential for better adhesion and to enhance performance with reduced leakage. Intimate biphasic oxide mixtures of PbO and CdO with TiO2 are first synthesized by nonhydrolytic solgel process with is followed by combustion to produce porous morphology. This powder can be coated as electrode and can sustain high temperature heat treatment routines and finally can be selectively converted to sulfides with Na2S treatment as TiO2 is immune to sulfidation under this condition. Materials at different stages are characterised by XRD, TEM, EDS, UV-Vis and XPS.
276

Anodized Zirconia Nanostructures

Choudhury, Tanushree H January 2013 (has links) (PDF)
Electrochemical anodization is a facile technique to synthesize ordered oxide nanostructures. Though the number of materials exhibiting anodized nanostructures has increased considerably in the recent years, only nanoporous alumina and nanotubular titania have been investigated extensively for various applications. Anodized nanostructures, nanotubes and nanopores, of zirconia are also of considerable interest for applications such as templates, sensors and solid-oxide fuel cells. In spite of the potential applications of zirconia, these nanostructures have been barely studied. As most of these applications require elevated temperatures in excess of 400C, thermal stability becomes an important attribute. Even though zirconia (Tm=2715C) has as higher melting point than alumina(Tm = 2072C), literature reports and initial research showed that the thermal stability of anodized zirconia was limited to 500C-1 h compared to 1000C-4 h for alumina. The work carried out as a part of this research showed that halide ions used in the synthesis are the possible cause for the lower thermal stability. Chemical treatment of the zirconia membranes to neutralize the halide ions helped enhance the stability to 1000C-1 h, thus, improving their usability for most of the applications mentioned above. Most of the current reported work on aluminum, zirconium, and titanium is predominantly limited to anodization of foils which can only yield free-standing nanostructures. As synthesis of these nanostructures on a substrate would further facilitate their usage, supported anodized zirconia nanostructures were synthesized by anodizing sputtered zirconium films. This study showed that the anodized morphology depends strongly on the sputtered film microstructure, which changes in accordance with the Thornton’s zone diagrams. A general approach thus developed is expected to be applicable to anodization of all metallic films. Most applications involving zirconia also require stabilization against a tetragonal-monoclinic phase transformation by suitable alloying such as with yttria. Towards this end, routes to develop anodized yttria-stabilized zirconia nanostructures, which are nonexistent, were explored. The synthesis of yttria stabilized zirconia nanostructures with no detectable monoclinic phase was achieved. Yttrium alloying using a solution treatment was found to enhance stability of the supported nanostructures to 900C-16 h, which makes it possible to now evaluate these nanostructures, especially for micro-SOFC applications.
277

Directed synthesis of polymer mesostructures

Faul, C. F. J. (Charles Frederick James) 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2000. / ENGLISH ABSTRACT: The objective of this research was to produce discrete, nano-shaped polymeric structures on the same length scale as, or one to one copies of, templates, deformable templates or structure-directing hosts. Polymerisation of hydrophobic organic monomers in high concentration surfactant solutions, leads to the formation of shaped particles (rod-like, plank-like and ribbon-like particles) in the micrometer size range. The origin of these regularly shaped particles was investigated. It is proposed that they were not polymeric in nature, but formed by the crystallisation of the surfactant in the presence of electrolytes and ethanol as solvent. The polymeric particles that were formed were found to be of spherical shape, and no directing of the shape was detected. Mesostructured hosts were then investigated for their possible use as structure-directing agents. A series of polyelectrolyte-surfactant complexes of polydiallylammonium chloride with sodium sulphate surfactants (ranging from C10 to C16) were synthesised and characterised in terms of their thermal, mechanical and structural properties. The complex of polydiallylammonium chloride and sodium dodecyl sulphate was selected as an appropriate self-assembled model system for investigations into the structure-directing properties of these new materials. The polymerisation of hydrophobic organic monomers, such as styrene and the di-functional monomer m-diisopropenylbenzene (m-DIB), within the above mesoscopically structured polyelectrolyte-surfactant complex as host, lead to the formation of unconventionally shaped polymeric particles. The influence of the presence of monomers and guest polymers on the phase morphology of the host was investigated by small angle X-ray analyses (SAXS) and dynamic mechanical analyses (DMA). SAXS analyses showed that these new, stable hosts can hold up to 17 % guest polymer before phase disruption is encountered. These findings were supported by changes in the mechanical properties, as determined by DMA. The transmission electron microscopy (TEM) images of particles obtained after polymerisation showed very clearly that the poly-(m-DIB) did not form a continuous copy of the 3D hexagonal structure of the host, but rather colloidal copies of a part of the host structure that swelled the most. The shapes of the polymer mesostructures were dictated by the morphology of the phase of the structure-directing host, to produce nanosized wires (dimensions 4 by 100 nm), cigar-shaped particles (dimensions 8 by 50 nm) and fibrillar bent shapes (larger than 200 nm), as revealed by TEM. According to literature these are the first shaped, polymer nano-particles produced in a soft, selfassembled, organic templating host. / AFRIKAANSE OPSOMMING: Die doel van hierdie navorsing was om diskrete, nano-gevormde polimeriese partikels van dieselfde lengteskaal as, of direkte een tot een kopië van, 'n templaat, 'n vervormbare of struktuur-rigtende gasheersisteem te produseer. Die polimerisasie van hidrofobiese organiese monomere in seep oplossings van hoë konsentrasie, het gelei tot die produksie van gevormde partikels. Die oorsprong van hierdie partikels is ondersoek. Dit word voorgestel dat die partikels nie polimeries van aard is nie, maar gevorm is deur die kristallisasie van die seep in die teenwoordigheid van elekotroliete en etanol as oplosmiddel. Die polimeriese partikels wat wel geproduseer is, was sferies in vorm, en geen rigtende invloed op die vorm van die partikels is waargeneem nie. Meso-gestruktureerde gasheersisteme is ook ondersoek vir moontlike gebruik as struktuur-rigtende agente. 'n Reeks poliëlektroliet-seep komplekse van polidiallielammoniumchloried en natriumsulfaat sepe (van C10 tot C16) is gesintetiseer en gekarakteriseer in terme van hul termiese, meganiese en strukturele eienskappe. Die kompleks van polidiallielammoniumchloried en natrium dodekielsulfaat is gekies as 'n toepaslike self-organiserende modelsisteem vir die ondersoeke na die struktuur-rigtende eienskappe van hierdie nuwe materiale. Polimerisasie van hidrofobiese organiese monomere, soos byvoorbeeld stireen en die di-funksionele monomeer m-di-isopropenielbenseen (m-DIB), in hierdie mesoskopies-gestruktureerde poliëlektroliet-seep kompleks, het gelei tot die vorming van nie-konvensionele gevormde polimeriese partikels. Die invloed van die teenwoordigheid van monomere en gaspolimere op die fasemorfologie van die gasheersisteem is ondersoek d.m.v. kleinhoek X-straal diffraksie (Eng. SAXS) en dinamiese meganiese analise (DMA). SAXS analises het aangetoon dat hierdie nuwe, stabiele gasheersisteem tot 17 % gaspolimeer kan inkorporeer voordat fasevernietiging plaasvind. Hierdie resultate is verder ondersteun deur veranderinge in die meganiese eienskappe soos waargeneem deur DMA. Transmissie elektronmikroskopie (TEM) afbeeldinge van partikels geïsoleer na polimerisasie het baie duidelik gewys dat, in die geval van poli-(m-DIB), die gaspolimeer nie 'n kontinue kopie van die drie dimensionele heksagonale struktuur van die gasheersisteem produseer nie. Daar word eerder 'kolloïdale kopieë' van dele van die gasheersisteem wat die meeste swel gevorm. Die vorms van die polimeer mesostrukture word dus bepaal deur die morfologie van die fase van die struktuur-rigtende gasheer, om nanogrootte draadjies (dimensies 4 x 100 nm), sigaarvormige partikels (8 x 50 nm) en fibrillêre gebuigde vorms (groter as 200 nm) te vorm, soos waargeneem met TEM. Volgens die literatuur is hierdie die eerste geval van gevormde polimeer nanopartikels geproduseer in 'n self-organiserende templaat gasheersisteem.
278

The chemistry and in vitro cytotoxicity study of manganese oxide nanostructures

Chan, Yiu-ming, 陳耀明 January 2007 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy
279

Micro-and nano-light-emitting diode arrays

Ng, Wai-nap., 吳卉納. January 2008 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
280

Fabrication of an aptamer-functionalised silica nanoparticle construct and its separation by magnetic capture-hybridisation

Bulsiewicz, Alicja January 2012 (has links)
Nanoparticles produced with surfaces functionalised by highly specific molecular tags are able to target aberrant cells and detect or eliminate them without causing damage to surrounding healthy tissues. Single-stranded DNA (ssDNA) and RNA which fold to form secondary or tertiary structures, termed aptamers, represent a new class of such molecular tags. The nanoparticles, in turn, may carry therapeutic payload or luminescent entities which enable elimination or visualisation of targeted cells respectively. This project presents fabrication and isolation of a surface-functionalised nanoparticle construct, namely aptamer-tagged silica nanoparticles. DNA aptamers were chosen with the intention to make them useful for clinical or diagnostic applications of targeting neoplastic cells. Indeed, the ssDNA applied here is known to bind mucin-1 which in turn is a biomarker found on the surface of metastatic breast cancer cells. The separation of the construct was made possible by the inclusion of oligonucleotide-bound superparamagnetic particles in the construct; these enabled separation by magnetic capture. This project investigates two approaches to fabrication of the construct. In the first approach, aptamers, oligonucleotides and magnetic particles are mixed in solution. In the second, silica nanoparticles are functionalised with aptamers, oligonucleotides are bound to magnetic particles and the resulting two parts are hybridised together. The first approach gives higher yields. This may suggest that binding of silica nanoparticles to aptamers may hinder aptamer hybridisation to oligonucleotide fragments, thus resulting in lower construct synthesis yields. However, it is not known yet how the yield changes upon addition of silica nanoparticles into the solution. Therefore, the second experimental approach provides a starting point for fabrication and purification of an anti-cancer drug targeting platform in a simple bench-top setting. In addition, this thesis discusses the fabrication of silica nanoparticles which were intended to constitute an element of the construct. The work on nanoparticle fabrication aimed to develop a quick and repeatable synthesis method which would result in monodisperse entities. Despite trying various experimental approaches, suitable particles could not be reproducibly obtained. Agglomeration was identified as a major obstacle in the silica nanoparticle production process. Finally, this project assesses whether the chosen aptamers bind to the metastatic breast cancer cells, which would be necessary if they were to be used for diagnosis or therapy. FACS analysis indeed indicate that ssDNA aptamers attach to the MCF7 cell line, but the optimum conditions for that attachment remain to be determined.

Page generated in 0.045 seconds