• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study on diffusion behaviors of water molecules within carbon nanocoils by molecular dynamics simulation

Chen, Ming-Chang 08 August 2012 (has links)
In this study, molecular dynamics (MD) simulations was employed to investigate (5,5), (10,10) single-walled nanocoils and (5,5)@(10,10) double-walled carbon nanocoils. The study can be arranged into two parts¡G In part I: Investigate the mechanical properties of (5,5), (10,10) single-walled nanocoils and (5,5)@(10,10) double-walled carbon nanocoils. The second reactive empirical bond order (REBO) potential was employed to model the interaction between carbon atoms. The contours of atomic slip vector and sequential slip vector were used to investigate the structural variations at different strains during the tension process. The yielding stress, maximum tensile strength, and Young¡¦s modulus were determined from the tensile stress-strain profiles. The results show that the nanocoils have superelastic characteristics to the carbon nanotube in the same tube diameter. In part II: Investigate the diffusion behavior of water molecules confined inside narrow (5,5) and (10,10) carbon nanocoils under different tensile strains. The condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) potential was employed to model the interaction between carbon-carbon atoms¡Acarbon atoms-water molecules and water-water molecules. To analysis the kinetic behavior of water molecules in two carbon nanocoils, the diffusion coefficients, square displacement (SD) and mean square displacement (MSD) of water molecules were calculated. The results show that diffusion coefficient of water will increase with the strains of carbon nanocoils. However, the diffusion coefficient has a significant decrease in a large strain due to the structural deformation of carbon nanocoils. The diffusion behaviors of water inside the (5,5) and (10,10) carbon nanotubes were also investigated to compare the results in (5,5) and (10,10) carbon nanotubes. Our results indicate that two carbon nanocoils have a lower diffusion coefficient of water than that of carbon nanotubes because the geometry of carbon nanocoil is easily to block up the diffusion of water molecules.
2

Carbon nanotube growth on perovskite substrates

Sun, Jingyu January 2012 (has links)
This thesis reports on the chemical vapour deposition (CVD) growth of carbon nanostructures (mainly carbon nanotubes (CNTs)) on perovskite oxide surfaces with the aid of various catalysts. Two types of perovskite oxide, single crystal SrTiO3 (001) and polycrystalline BaSrTiO<sub>3</sub>, have been used as catalyst supports (in metal-catalyst-involved CVD routes) or as catalysts (via metal-catalyst-free CVD routes) for the growth of carbon nanostructures. In metal-catalyst-involved cases, SrTiO<sub>3</sub> (001) single crystal has been proven, for the first time, to serve as a substrate for the growth of CNTs. Fe and Ni catalysts can be tailored in a controllable manner on SrTiO3 (001) surfaces prior to the CNT synthesis, forming truncated pyramid shaped nanocrystals with uniform size distributions. The growth of vertically aligned CNT carpets was realised with the aid of Fe on SrTiO<sub>3</sub> (001) surfaces, and it was further found that the CNTs grow via a base growth model. Furthermore, it is possible to grow helical carbon nanostructures on BaSrTiO3 substrates by introducing a Sn catalyst into the system. The synthesised helical carbon nanostructures follow a tip growth mode, where the structural and chemical aspects of catalyst particles gave rise to a wide range of carbon morphologies. CNTs were also grown on single crystal SrTiO<sub>3</sub> (001) and polycrystalline BaSrTiO3 substrates via metal-catalyst-free routes. The surface-roughness-tailored growth of CNTs was surprisingly achieved on a series of engineered SrTiO<sub>3</sub> (001) surfaces, where a correlation between the surface roughness/morphology of the substrates and the relevant catalytic activity was revealed. The growth of CNTs arises because the catalyst fabrication methods lead to the formation of SrTiO<sub>3</sub> asperities with nanoscale curvatures, over which the CNTs are generated throughout a lift-off process. Facet-selective growth of CNTs was observed on polycrystalline BaSrTiO<sub>3</sub> surfaces, where BaSrTiO<sub>3</sub> (110) facets lead to the growth of CNTs on them, whereas the (001) facets result in no growth at all. This observation was further analysed in the content of the adsorption and diffusion of carbon species on distinct BaSrTiO<sub>3</sub> facets, before reaching the conclusion that the formation of CNTs occurs through a metal-free, stack-up process driven by the assembly of the carbon fragments.
3

Mechanical compression of coiled carbon nanotubes

Barber, Jabulani Randall Timothy 26 February 2009 (has links)
Carbon nanotubes are molecular-scale tubes of graphitic carbon that possess many unique properties. They have high tensile strength and elastic modulus, are thermally and electrically conductive, and can be structurally modified using well established carbon chemistries. There is global interest in taking advantage of their unique combination of properties and using these interesting materials as components in nanoscale devices and composite materials. The goal of this research was the correlation of the mechanical properties of coiled carbon nanotubes with their chemical structure. Individual nanocoils, grown by chemical vapor deposition, were attached to scanning probe tip using the arc discharge method. Using a scanning probe microscope the nanocoils are repeatedly brought into and out of contact with a chemically-modified substrate. Precise control over the length (or area) of contact with the substrate is achievable through simultaneous monitoring the cantilever deflection resonance, and correlating these with scanner movement. The mechanical response of nanocoils depended upon the extent of their compression. Nonlinear response of the nanocoil was observed consistent with compression, buckling, and slip-stick motion of the nanocoil. The chemical structure of the nanocoil and its orientation on the tip was determined using scanning and transmission electron microscopy. The mechanical stiffness of eighteen different nanocoils was determined in three ways. In the first, the spring constant of each nanocoil was computed from the slope of the linear response region of the force-distance curve. The assumptions upon which this calculation is based are: 1) under compression, the cantilever-nanocoil system can be modeled as two-springs in series, and 2) the nanocoil behaves as an ideal spring as the load from the cantilever is applied. Nanocoil spring constants determined in this fashion ranged from 6.5x10-3 to 5.16 TPa for the CCNTs understudy. In the second, the spring constant of the nanocoil was computed from measuring the critical force required to buckle the nanocoil. The critical force method measured the force at the point where the nanocoil-cantilever system diverges from a linear region in the force curve. Nanocoil spring constants determined in this fashion ranged from 1.3x10-5 to 10.4 TPa for the CCNTs understudy. In the third, the spring constant of each nanocoil was computed from the thermal resonance of the cantilever-nanocoil system. Prior to contact of the nanocoil with the substrate, the effective spring constant of the system is essentially that of the cantilever. At the point of contact and prior to buckling or slip-stick motion, the effective spring constant of the system is modeled as two springs in parallel. Nanocoil spring constants determined in this fashion ranged from 2.7x10-3 to 0.03 TPa for the CCNTs understudy. Using the thermal resonance of the cantilever system a trend was observed relating nanocoil structure to the calculated modulus. Hollow, tube-like nanostructures had a higher measured modulus than solid or fibrous structures by several orders of magnitude. One can conclude that the structure of carbon nanocoils can be determined from using their mechanical properties. This correlation should significantly contribute to the knowledge of the scientific and engineering community. It will enable the integration of carbon nanocoils in microelectromechanical (MEMS) or nanoelectromechanical systems (NEMS) as resonators, vibration dampers, or any other application in which springs are used within complex devices.
4

Synthesis and Functionalization of Coiled Carbon Filaments

Hikita, Muneaki January 2014 (has links)
No description available.

Page generated in 0.0368 seconds