Spelling suggestions: "subject:"nanospring"" "subject:"nanosprings""
1 |
Experimental Investigation on Mechanical Properties of Nanospring Thin Films Fabricated by Glancing Angle Deposition Technique / 斜め蒸着法で作製したナノスプリング薄膜の機械特性評価に関する研究Shaoguang, Chen 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20331号 / 工博第4268号 / 新制||工||1661(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 北村 隆行, 教授 北條 正樹, 教授 西脇 眞二 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
2 |
Mechanical compression of coiled carbon nanotubesBarber, Jabulani Randall Timothy 26 February 2009 (has links)
Carbon nanotubes are molecular-scale tubes of graphitic carbon that possess many unique properties. They have high tensile strength and elastic modulus, are thermally and electrically conductive, and can be structurally modified using well established carbon chemistries. There is global interest in taking advantage of their unique combination of properties and using these interesting materials as components in nanoscale devices and composite materials.
The goal of this research was the correlation of the mechanical properties of coiled carbon nanotubes with their chemical structure. Individual nanocoils, grown by chemical vapor deposition, were attached to scanning probe tip using the arc discharge method. Using a scanning probe microscope the nanocoils are repeatedly brought into and out of contact with a chemically-modified substrate. Precise control over the length (or area) of contact with the substrate is achievable through simultaneous monitoring the cantilever deflection resonance, and correlating these with scanner movement. The mechanical response of nanocoils depended upon the extent of their compression. Nonlinear response of the nanocoil was observed consistent with compression, buckling, and slip-stick motion of the nanocoil. The chemical structure of the nanocoil and its orientation on the tip was determined using scanning and transmission electron microscopy.
The mechanical stiffness of eighteen different nanocoils was determined in three ways. In the first, the spring constant of each nanocoil was computed from the slope of the linear response region of the force-distance curve. The assumptions upon which this calculation is based are: 1) under compression, the cantilever-nanocoil system can be modeled as two-springs in series, and 2) the nanocoil behaves as an ideal spring as the load from the cantilever is applied. Nanocoil spring constants determined in this fashion ranged from 6.5x10-3 to 5.16 TPa for the CCNTs understudy. In the second, the spring constant of the nanocoil was computed from measuring the critical force required to buckle the nanocoil. The critical force method measured the force at the point where the nanocoil-cantilever system diverges from a linear region in the force curve. Nanocoil spring constants determined in this fashion ranged from 1.3x10-5 to 10.4 TPa for the CCNTs understudy. In the third, the spring constant of each nanocoil was computed from the thermal resonance of the cantilever-nanocoil system. Prior to contact of the nanocoil with the substrate, the effective spring constant of the system is essentially that of the cantilever. At the point of contact and prior to buckling or slip-stick motion, the effective spring constant of the system is modeled as two springs in parallel. Nanocoil spring constants determined in this fashion ranged from 2.7x10-3 to 0.03 TPa for the CCNTs understudy.
Using the thermal resonance of the cantilever system a trend was observed relating nanocoil structure to the calculated modulus. Hollow, tube-like nanostructures had a higher measured modulus than solid or fibrous structures by several orders of magnitude. One can conclude that the structure of carbon nanocoils can be determined from using their mechanical properties. This correlation should significantly contribute to the knowledge of the scientific and engineering community. It will enable the integration of carbon nanocoils in microelectromechanical (MEMS) or nanoelectromechanical systems (NEMS) as resonators, vibration dampers, or any other application in which springs are used within complex devices.
|
Page generated in 0.0683 seconds