• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 401
  • 259
  • 141
  • 73
  • 16
  • 10
  • 9
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1098
  • 310
  • 235
  • 190
  • 140
  • 134
  • 122
  • 122
  • 120
  • 108
  • 105
  • 99
  • 99
  • 83
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
971

Mg-Al Layered Double Hydroxide: A Potential Nanofiller and Flame-Retardant for Polyethylene

Costa, Francis Reny 09 November 2007 (has links)
The presented research report deals with the investigation of magnesium aluminum based layered double hydroxide (LDH) as a potential nanofiller and flame-retardant for polymers with special reference to polyethylene. LDH is a mixed hydroxide of di- and trivalent metal ions that crystallizes in the form of mineral brucite. The basic reason for selecting LDH or more specifically magnesium-aluminum based LDH (Mg-Al LDH) is their typical metal hydroxide-like chemistry and conventional clay-like layered crystalline structure. The former is helpful in the direct participation in flame inhibition through endothermic decomposition and stable char formation. On the other hand, the later makes LDH suitable for polymer nanocomposite preparation, which can address the poor dispersibility problem associated with conventional metal hydroxide type fillers in polyolefin matrix. Besides, unlike layered silicate type clays (often reported for their capability to improve flame retardancy of polymers), LDH being reactive during combustion has higher efficiency to reduce the heat released during combustion of the composites. LDH clay with fixed Al:Mg ratio was synthesized using urea hydrolysis method and characterized. The organic modification of Mg-Al LDH using anionic surfactants has been studied in details. The main purpose of such modification is to enlarge the interlayer distance and to render it more organophilic. The surfactants were selected based on their functionality, chain length, etc and the modification was carried out by regeneration method. In the modified LDHs, the surfactants anions are arranged as a monolayer in the interlayer region and expand the interlayer distance according to their tail size. PE/LDH nanocomposites were prepared by melt-compounding method using a co-rotating tightly intermeshed twin-screw extruder and the morphological, mechanical and flammability properties of the nanocomposites were investigated in details. The X-ray diffraction analysis and electron microscopic analysis show a complex LDH particle morphology with hierarchy of particle size and shape starting from exfoliated particles fragments to particle aggregates over few hundred nm size. The exfoliated LDH platelets are distributed both in the vicinity of large particles and also in the bulk matrix. The melt rheological characterization of the nanocomposites also reflects the similar complex particle morphology. The dynamic oscillatory shear experiments showed that with increasing LDH concentration, the rheological behavior of the nanocomposite melts deviates strongly from that of the unfilled polyethylene. Thermogravimetric analysis (TGA) shows that LDH significantly improves the thermal stability of the polymer matrix in comparison to the unfilled polymer. The flammability studies of the PE/LDH nanocomposites have been reported in terms of various standard methods, like limited oxygen index (LOI), cone-calorimetry and UL-94 vertical and horizontal burn tests. The cone-calorimetric investigation shows that the nanocomposites have significantly lower burning rate and heat released during combustion. With increasing concentration of LDH though the LOI value of the nanocomposite increases marginally, the burning behavior, like dripping, rate of burning, etc are significantly improved. The flammability performance of LDH in combination with other commonly used flame-retardant (magnesium hydroxide) was also investigated. It has been observed that in polyethylene, a 50 wt% combination filler (4:1 weight ratio of magnesium hydroxide and LDH) can provide similar flammability ratings (like V0 rating in UL94 test, no dripping, etc) as that observed with 60 wt% magnesium hydroxide alone.
972

Rheological and Mechanical behaviour of Block copolymers, Multigraft copolymers and Block copolymer Nanocomposites

Thunga, Mahendra 18 June 2009 (has links)
Block copolymers are commercially significant and fundamentally interesting class of polymeric materials. The ability to undergo interfacial thermodynamics-controlled microphase separation from a completely disordered state in the melt to a specifically defined ordered structure through self-organization makes the block copolymers based materials unique. Block copolymer are strongly replacing many of the commercially available polymers due to their unique microstructure and properties. The most practical interests of block copolymers lie in the area of thermoplastic elastomers (TPEs). The objective of the present thesis work is to developing novel roots for enhancing the physical and mechanical properties in block copolymer and multigraft copolymers. Initially the properties are tailored by controlling chemical architecture at synthesis level and by selective blending at production level. This gives an easy access for improvement of the material properties and this is one of my major tasks in the present research modules. Further the block copolymer based TPEs are cross-linked in presence of electron beam (EB) radiation for developing materials with superior properties. The electron beam radiation has the ability to alter material parameters at molecular level for enhancing the macroscopic properties. The desirable physical and chemical properties can be easily attained by varying the radiation beam parameters. In addition to that, controlling the material at nanometer scale is one of the greatest challenges for current nanocomposite research. In elastomeric materials it is very prominent to fill the rubber matrix with nano particles from carbon or silica by melt mixing technique for enhancing the material properties. Other than conventional melt mixing technique, sol–gel processing is also a versatile technique, which making it possible to produce a wide variety of materials and to provide existing materials with novel properties. A combination of in situ sol-gel reaction with electron beam cross-linking in TPEs from triblock copolymer has been demonstrated for the first time as one of the novel nanocomposite system in this work. The main advantage of this system lies in controlling the material behaviour by finely tuning the size of silica nano particle generated inside TPE during in situ sol-gel reaction. Finally, the various roots employed for enhancing the material behaviour in block copolymers in the above research module were secussfully employed on super elastic multigraft copolymers for improving their strength withour sacrificing the super elastic nature.
973

Nanoskalige Halbleiter und funktionalisierte Kohlenstoffmaterialien: Darstellung, Charakterisierung und Anwendung in Elektrolumineszenzbauteilen

Schrage, Christian 02 July 2010 (has links)
In dieser Arbeit werden zwei Schwerpunkte behandelt. Zum Einen soll der Einsatz nanoskaliger Materialien als Funktionskomponenten in Elektrolumineszenzbauteilen beschrieben werden. Dabei wird in einem ersten Aufbau ein transparenter Nanokompositfilm als emittierende Schicht in einem, den organischen Leuchtdioden, analogen Aufbau eingesetzt, während in einer zweiten Struktur eine transparente Elektrode, die auf nanoskaligen Kohlenstoffmaterialien (Kohlenstoffnanoröhren bzw. Graphenen) basiert, hinsichtlich ihrer Eignung als Alternative zu etablierten transparenten Elektroden untersucht werden soll. In weiterführenden Arbeiten werden die Erfahrungen aus der Graphensynthese auf die Generierung poröser, funktionalisierter Kohlenstoffmaterialien angewendet. Verbindend, wird die Röntgenkleinwinkelstreuung eingesetzt, um in vergleichenden Untersuchungen möglichst detailierte Informationen über die jeweiligen Systeme zu erhalten.
974

Nitride-Based Nanocomposite Thin Films Towards Tunable Nanostructures and Functionalities

Xuejing Wang (9099860) 29 July 2020 (has links)
<p> Optical metamaterials have triggered extensive studies driven by their fascinating electromagnetic properties that are not observed in natural materials. Aside from the extraordinary progress, challenges remain in scalable processing and material performance which limit the adoption of metamaterial towards practical applications. The goal of this dissertation is to design and fabricate nanocomposite thin films by combining nitrides with a tunable secondary phase to realize controllable multi-functionalities towards potential device applications. Transition metal nitrides are selected for this study due to the inherit material durability and low-loss plasmonic properties that offer stable two-phase hybridization for potential high temperature optical applications. Using a pulsed laser deposition technique, the nitride-metal nanocomposites are self-assembled into various geometries including pillar-in-matrix, embedded nanoinclusions or complex multilayers, that possess large surface coverage, high epitaxial quality, and sharp phase boundary. The nanostructures can be further engineered upon precise control of growth parameters. </p><p> This dissertation is composed of a general review of related background and experimental approaches, followed by four chapters of detailed research chapters. The first two research chapters involve hybrid metal (Au, Ag) - titanium nitride (TiN) nanocomposite thin films where the metal phase is self-assembled into sub-20 nm nanopillars and further tailored in terms of packing density and tilting angles. The tuning of plasmonic resonance and dielectric constant have been achieved by changing the concentration of Au nanopillars, or the tuning of optical anisotropy and angular selectivity by changing the tilting angle of Ag nanopillars. Towards applications, the protruded Au nanopillars are demonstrated to be highly functional for chemical bonding detection or surface enhanced sensing, whereas the embedded Ag nanopillars exhibit enhanced thermal and mechanical stabilities that are promising for high temperature plasmonic applications. In the last two chapters, dissimilar materials candidates beyond plasmonics have been incorporated to extend the electromagnetic properties, include coupling metal nanoinclusions into a wide bandgap semiconducting aluminum nitride matrix, as well as inserting a dielectric spacer between the hybrid plasmonic claddings for geometrical tuning and electric field enhancement. As a summary, these studies present approaches in addressing material and fabrication challenges in the field of plasmonic metamaterials from fundamental materials perspective. As demonstrated in the following chapters, these hybrid plasmonic nanocomposites provide multiple advantages towards tunable optical or biomedical sensing, high temperature plasmonics, controllable metadevices or nanophotonic chips.</p><div><br></div>
975

Praseodymium Oxide and Organic Modified Cerium Oxide Nanoparticles for Electrodeposition of Nickel-Ceramic Nanocomposites to Enhance Corrosion Protection and Mechanical Properties

Sanders, Stephen 05 1900 (has links)
There is a consistent need in many industries, especially oil and gas, to develop coatings which have higher corrosion resistance and better hardness to extend the lifetime of equipment when it is exposed to hostile environments. Electrodeposition has been a favorable method in the synthesis of metal coatings because of its low cost, convenience, ability to work at low temperatures, and ability to control surface morphology and structure. The inclusion of ceramic nanoparticles in metal matrix composites has previously been investigated as a technique to not only increase the corrosion resistance of the native metal but also to improve the hardness and mechanical properties. Cerium oxide nanoparticles were modified through the grafting of organic groups with increasing hydrophobicity for use in nickel coatings on stainless steel to further improve the corrosion properties while maintaining the hardness of the nanocomposite coatings. The process of modifying the cerium oxide nanoparticles involved the use of aryl diazonium salts and resulted in multilayers forming on the surface of the nanoparticles. Praseodymium oxide nanoparticles were also investigated as additives to nickel coatings, since praseodymium oxide has not yet been studied as a possible corrosion protection enhancement in coatings. These coatings were evaluated for composition and corrosion using many different types of instrumental and electrochemical techniques. With the addition of both the modified cerium oxide nanoparticles and the praseodymium oxide nanoparticles into nickel coatings, an increase in coating hardness and corrosion resistance was observed over pure nickel, resulting in an improvement of the lifetime of these coatings.
976

Nanocellulose surface functionalization for in-situ growth of zeolitic imidazolate framework 67 and 8

Abdulla, Beyar January 2020 (has links)
This master’s thesis was conducted at the Department of Nanotechnology and Functional Materials at Ångström Laboratory as part of an on-going project to develop hybrid nanocomposites from Cladophora cellulose and a sub-type of metal-organic frameworks; zeolitic imidazolate frameworks (ZIFs). By utilizing a state-of-the-art interfacial synthesis approach, in-situ growth of ZIF particles on the cellulose could be achieved. TEMPO-mediated oxidation was diligently used to achieve cellulose nanofibers with carboxylate groups on their surfaces. These were ion-exchanged to promote growth of ZIF particles in a nanocellulose solution and lastly, metal ions and organic linkers which the ZIFs are composed of were added to the surface functionalized and ion-exchanged nanocellulose solution to promote ZIF growth. By vacuum filtration, mechanical pressing and furnace drying; freestanding nanopapers were obtained. A core-shell morphology between the nanocellulose and ZIF crystals was desired and by adjusting the metal ion concentration, a change in morphologies was expected. The nanocomposites were investigated with several relevant analytical tools to confirm presence, attachment and in-situ growth of ZIF crystal particles upon the surface of the fine nanocellulose fibers. Both the CNF@ZIF-67 and CNF@ZIF-8 nanocomposites were successfully prepared as nanopapers with superior surface areas and thermal properties compared to pure TEMPO-oxidized cellulose nanopapers. The CNF@ZIFs showcased hierarchical porosities, stemming from the micro- and mesoporous ZIFs and nanocellulose, respectively. Also, it was demonstrated that CNF@ZIF-8 selectively adsorbed CO2 over N2. Partial formation of core-shell structure could be obtained, although a relationship between increased metal ions and ZIF particle morphology could not wholly be observed.
977

THE FABRICATION AND CHARACTERIZATION OF METAL OXIDE NANOPARTICLES EMPLOYED IN ENVIRONMENTAL TOXICITY AND POLYMERIC NANOCOMPOSITE APPLICATIONS

Hancock, Matthew Logan 01 January 2019 (has links)
Ceria (cerium oxide) nanomaterials, or nanoceria, have commercial catalysis and energy storage applications. The cerium atoms on the surface of nanoceria can store or release oxygen, cycling between Ce3+ and Ce4+, and can therefore act as a therapeutic to relieve oxidative stress within living systems. Nanoceria dissolution is present in acidic environments in vivo. In order to accurately define the fate of nanoceria in vivo, nanoceria dissolution or stabilization is observed in vitro using acidic aqueous environments. Nanoceria stabilization is a known problem even during its synthesis; in fact, a carboxylic acid, citric acid, is used in many synthesis protocols. Citric acid adsorbs onto nanoceria surfaces, capping particle formation and creating stable dispersions with extended shelf lives. Nanoceria was shown to agglomerate in the presence of some carboxylic acids over a time scale of up to 30 weeks, and degraded in others, at pH 4.5 (representing that of phagolysosomes). Sixteen carboxylic acids were tested: citric, glutaric, tricarballylic, α-hydroxybutyric, β-hydroxybutyric, adipic, malic, acetic, pimelic, succinic, lactic, tartronic, isocitric, tartaric, dihydroxymalonic, and glyceric acid. Each acid was introduced as 0.11 M, into pH 4.5 iso-osmotic solutions. Controls such as ammonium nitrate, sodium nitrate, and water were also tested to assess their effects on nanoceria dissolution and stabilization. To further test stability, nanoceria suspensions were subject to light and dark milieu, simulating plant environments and biological systems, respectively. Light induced nanoceria agglomeration in some, but not all ligands, and is likely to be a result of UV irradiation. Light initiates free radicals generated from the ceria nanoparticles. Some of the ligands completely dissolved the nanoceria when exposed to light. Citric and malic acids form coordination complexes with cerium on the surface of the ceria nanoparticle that can inhibit agglomeration. This approach identifies key functional groups required to prevent nanoceria agglomeration. The impact of each ligand on nanoceria was analyzed and will ultimately describe the fate of nanoceria in vivo. In addition, simulated biological fluid (SBF) exposure can change nanoceria’s surface properties and biological activity. The citrate-coated nanoceria physicochemical properties such as size, morphology, crystallinity, surface elemental composition, and charge were determined before and after exposure to simulated lung, gastric, and intestinal fluids. SBF exposure resulted in either loss or overcoating of nanoceria’s surface citrate by some of the SBF components, greater nanoceria agglomeration, and small changes in the zeta potential. Nanocomposites are comprised of a polymer matrix embedded with nanoparticles. These nanoparticles can alter material and optical properties of the polymer. SR-399 (dipentaerythritol pentaacrylate) is a fast cure, low skin irritant monomer that contains five carbon-carbon double bonds (C=C). It is a hard, flexible polymer, and also resistant to abrasion. It can be used as a sealant, binder, coating, and as a paint additive. In this case, metal oxide nanoparticles were added to the monomer prior to polymerization. Titania nanoparticles are known to absorb UV light due to their photocatalytic nature. Titania nanoparticles were chosen due to their high stability, non-toxicity, and are relatively quick, easy, and inexpensive to manufacture. Channels in thin monomer films were created using a ferrofluid manipulated by magnetic fields. The mechanical properties of a microfluidic device by rapid photopolymerization is dependent on the crosslinking gradient observed throughout the depth of the film. Quantitative information regarding the degree of polymerization of thin film polymers polymerized by free radical polymerization through the application of UV light is crucial to estimate material properties. In general, less cure leads to more flexibility, and more cure leads to brittleness. The objective was to quantify the degree of polymerization to approximate the C=C concentration and directly relate it to the mechanical properties of the polymer. Polymerization of C=C groups was conducted using a photoinitiator and an UV light source from one surface of a thin film of a multifunctional monomer. The C=C fraction in the film was found to vary with film depth and UV light intensity. The extents of conversion and crosslinking estimates were compared to local mechanical moduli and optical properties. A mathematical model linking the mechanical properties to the degree of polymerization, C=C composition, as a function of film depth and light intensity was then developed. For a given amount of light energy, one can predict the hardness and modulus of elasticity. The correlation between the photopolymerization and the mechanical properties can be used to optimize the mechanical properties of thin films within the manufacturing and energy constraints, and should be scalable to other multifunctional monomer systems.
978

Rational Design of Materials for the Protection of Outdoor Metalworks

Swartz, Natasja Alexandria 11 August 2015 (has links)
Protective coatings are commonly used to protect culturally significant works, such as outdoor sculptures and architectural elements. Given the valuable nature of such metalworks, there is a surprising lack of environmentally sustainable coatings available for their conservation. High performance clear coatings are not developed or thoroughly tested for compatibility and longevity on outdoor sculptures. This can make the implementation of both methods and materials, no matter how promising in a lab, a significant hurdle for the conservation science community. This dissertation work initially aims to replace high-VOC formulations such as acrylic lacquers and waxes currently used as protective coatings for bronze with a waterborne coating by investigating the film formation differences between coating types. Such differences likely have implications for initial film barrier properties as well as long-term performance. For coating any large-scale metal object, cost-effectiveness limits applicable coatings to commercially available resins with some minor adjustments. Additional requirements for protective coatings for artwork require they must also be transparent, reversible, easily applied and environmentally sustainable. The chemical and physical properties of polymeric coatings with nanoclays modifiers were investigated as they may offer superior weatherability and act as better barriers to water absorption than commonly used lacquers and waxes. This work ultimately finds that nanocomposites with poly(vinylidene fluoride) latex and chemically stabilized nanoclays significantly improved performance and may be a viable option in the protection of material cultural heritage. Protection of high value objects where aesthetics is also important, such as airplanes, buildings, and sculptures are among the possible applications for this research.
979

Rapid Tooling Carbon Nanotube-Filled Epoxy for Injection Molding Using Additive Manufacturing and Casting Methods

Stockham, Corbin H. 28 September 2020 (has links)
No description available.
980

Mechanical, electrical and sensing properties of melt-spun polymer fibers filled with carbon nanoparticles

Bautista Quijano, Jose Roberto 31 August 2018 (has links)
Multifunctional polymer fibers with strain and liquid sensing capabilities were fabricated and characterized. The Hansen Solubility Parameters (HSPs) were used as a tool for selecting a suitable polymer to employ as matrix for the sensing material before fiber fabrication. The addition of conductive carbon particles to a polymer matrix provides it with sensing capabilities, such as against tensile strain and the presence of liquids as it was evaluated in this work. Multiwall carbon nanotubes (MWCNTs, MW) as well as a mixture of carbon black (CB) and MWCNTs in weight concentration of 1:1 were used as conductive fillers. The route followed to achieve electrically conductive polymer fibers necessary for sensing evaluations was a combined process of melt-mixing and subsequent melt-spinning. Melt-mixing and melt-spinning are processing techniques widely used in the polymer industry that could enable the up-scaling of the fibers developed in this work. Additionally to single component fibers, bi-component (BICO) fibers consisting of a polycarbonate (PC)+CB+MW sheath and a neat PC core were also fabricated, characterized and their performance was compared to the single component fibers. The state of dispersion of the carbon nanoparticles (CNPs) as well as tensile behavior, electrical resistivity, strain and liquid sensing properties of the composite fibers were evaluated. Finally a specific fiber composition with potential to be used as sensing material for mechanical strain and liquid exposition was proposed to be tested under two real situations (strain monitoring of a rigid structure and leakage detection of a chemical substance). Sensing fibers as the developed in this work have many potential applications such as real-time deformation and structural health monitoring and early cracking detection of any kind of structure. On the other hand, fibers able to sense the presence of liquids can perceive the leakage of chemicals that are hazardous to life. Moreover, this technology can also be applied in smart clothing manufacture by combining sensing fibers with flexible woven electronics.

Page generated in 0.0406 seconds