Spelling suggestions: "subject:"nanocontacts"" "subject:"nanocontactos""
1 |
Ruído no transporte eletrônico em sistemas mesoscópicos / Noise in the electronic transport in mesoscopic systemsCorrêa Júnior, Clóvis 24 September 2018 (has links)
Orientador: Guillermo Gerardo Cabrera Oyarzun / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-24T18:53:24Z (GMT). No. of bitstreams: 1
CorreaJunior_Clovis_M.pdf: 2475896 bytes, checksum: c134096367f5dc832f4c32ec8a9e224b (MD5)
Previous issue date: 2009 / Resumo: Nesta dissertação de mestrado são descritas as características fundamentais dos condutores mesoscópicos, e as origens e propriedades das várias fontes de ruído em condutores. Primeiramente, descrevemos o ruído com distintos métodos e enfatizamos as propriedades de cada tipo de ruído. Em seguida, apresentamos a abordagem da matriz de espalhamento para condutores com coerência de fase, a qual permite-nos tratar as propriedades de transporte de forma unificada. Estudamos um modelo proposto para descrever as propriedades de transporte de nanofios e nanocontatos dos metais magnéticos de transição. É assumido que os orbitais de condução são do tipo s, o que permite a existência de dois canais de condução devido ao spin. Da mesma forma, consideramos os orbitais d como fontes de momentos de dipolos magnéticos locais. O modelo é aplicado ao caso de nanocontatos constituídos de dois átomos, os quais estão acoplados a dois eletrodos magnéticos. Usando um pequeno campo externo, é possível controlar os estados de polarização dos eletrodos: paralelamente e anti-paralelamente. Nesse nanocontato, são estudados as propriedades do coe½ciente de transmissão, da condutância, do ruído shot quântico, do fator de Fano e da magnetoresistência / Abstract: This dissertation describes the fundamental caracteristics of mesoscopic conductors, and the origins and properties of the sources of noise in conductors. Firstly, we describe the noise through different methods and emphasize the properties of each kind of noise. In the following, we present the scattering approach for coherent phase conductors, which allows us to get the transport properties from a unified picture. It is studied a particular model to describe the transport properties of magnetic transsition metal nanowires and nanocontacts. It is assumed that conduction orbitals are s-like, with the occurrence of only two conductions channel due to spin. In turn, d-like orbitals are sources of local magnetic moments. The model is applied to a simple nanocontact built of two atoms, which are coupled to two magnetic electrodes. Using small external fields, one can handle the polarization state of the electrods: in parallel or antiparallel alignment. From that nanocontact, we investigate the properties of the transmission coe°cient, the conductance, the quantum shot noise, the Fano factor and the magnetoresistance / Mestrado / Física da Matéria Condensada / Mestre em Física
|
2 |
Theoretical and experimental study of electronic transport and structure in atomic-sized contactsSabater, Carlos 05 May 2013 (has links)
No description available.
|
3 |
Atomistic simulations of competing influences on electron transport across metal nanocontactsDednam, Wynand 14 June 2019 (has links)
In our pursuit of ever smaller transistors, with greater computational throughput, many
questions arise about how material properties change with size, and how these properties
may be modelled more accurately. Metallic nanocontacts, especially those for which
magnetic properties are important, are of great interest due to their potential spintronic
applications. Yet, serious challenges remain from the standpoint of theoretical and
computational modelling, particularly with respect to the coupling of the spin and lattice
degrees of freedom in ferromagnetic nanocontacts in emerging spintronic technologies. In
this thesis, an extended method is developed, and applied for the first time, to model the
interplay between magnetism and atomic structure in transition metal nanocontacts. The
dynamic evolution of the model contacts emulates the experimental approaches used in
scanning tunnelling microscopy and mechanically controllable break junctions, and is
realised in this work by classical molecular dynamics and, for the first time, spin-lattice
dynamics. The electronic structure of the model contacts is calculated via plane-wave and
local-atomic orbital density functional theory, at the scalar- and vector-relativistic level of
sophistication. The effects of scalar-relativistic and/or spin-orbit coupling on a number of
emergent properties exhibited by transition metal nanocontacts, in experimental
measurements of conductance, are elucidated by non-equilibrium Green’s Function
quantum transport calculations. The impact of relativistic effects during contact formation
in non-magnetic gold is quantified, and it is found that scalar-relativistic effects enhance the force of attraction between gold atoms much more than between between atoms which
do not have significant relativistic effects, such as silver atoms. The role of non-collinear
magnetism in the electronic transport of iron and nickel nanocontacts is clarified, and it is
found that the most-likely conductance values reported for these metals, at first- and lastcontact,
are determined by geometrical factors, such as the degree of covalent bonding in
iron, and the preference of a certain crystallographic orientation in nickel. / Physics / Ph. D. (Physics)
|
Page generated in 0.057 seconds