Spelling suggestions: "subject:"kuantum transport calculations"" "subject:"auantum transport calculations""
1 |
Low-rank Approximations in Quantum Transport SimulationsDaniel A. Lemus (5929940) 07 May 2020 (has links)
Quantum-mechanical effects play a major role in the performance of modern electronic devices. In order to predict the behavior of novel devices, quantum effects are often included using Non-Equilibrium Green's Function (NEGF) methods in atomistic device representations. These quantum effects may include realistic inelastic scattering caused by device impurities and phonons. With the inclusion of realistic physical phenomena, the computational load of predictive simulations increases greatly, and a manageable basis through low-rank approximations is desired.<br><br>In this work, low-rank approximations are used to reduce the computational load of atomistic simulations. The benefits of basis reductions on simulation time and peak memory are assessed.<br>The low-rank approximation method is then extended to include more realistic physical effects than those modeled today, including exact calculations of scattering phenomena. The inclusion of these exact calculations are then contrasted to current methods and approximations.
|
2 |
Atomistic simulations of competing influences on electron transport across metal nanocontactsDednam, Wynand 14 June 2019 (has links)
In our pursuit of ever smaller transistors, with greater computational throughput, many
questions arise about how material properties change with size, and how these properties
may be modelled more accurately. Metallic nanocontacts, especially those for which
magnetic properties are important, are of great interest due to their potential spintronic
applications. Yet, serious challenges remain from the standpoint of theoretical and
computational modelling, particularly with respect to the coupling of the spin and lattice
degrees of freedom in ferromagnetic nanocontacts in emerging spintronic technologies. In
this thesis, an extended method is developed, and applied for the first time, to model the
interplay between magnetism and atomic structure in transition metal nanocontacts. The
dynamic evolution of the model contacts emulates the experimental approaches used in
scanning tunnelling microscopy and mechanically controllable break junctions, and is
realised in this work by classical molecular dynamics and, for the first time, spin-lattice
dynamics. The electronic structure of the model contacts is calculated via plane-wave and
local-atomic orbital density functional theory, at the scalar- and vector-relativistic level of
sophistication. The effects of scalar-relativistic and/or spin-orbit coupling on a number of
emergent properties exhibited by transition metal nanocontacts, in experimental
measurements of conductance, are elucidated by non-equilibrium Green’s Function
quantum transport calculations. The impact of relativistic effects during contact formation
in non-magnetic gold is quantified, and it is found that scalar-relativistic effects enhance the force of attraction between gold atoms much more than between between atoms which
do not have significant relativistic effects, such as silver atoms. The role of non-collinear
magnetism in the electronic transport of iron and nickel nanocontacts is clarified, and it is
found that the most-likely conductance values reported for these metals, at first- and lastcontact,
are determined by geometrical factors, such as the degree of covalent bonding in
iron, and the preference of a certain crystallographic orientation in nickel. / Physics / Ph. D. (Physics)
|
Page generated in 0.1127 seconds