Spelling suggestions: "subject:"nanofibers."" "subject:"nanaofibers.""
11 |
Characterization of Mechanically and Enzymatically Produced Cellulose Nanofibers from Wood PulpSiddiqui, Nazia January 2008 (has links) (PDF)
No description available.
|
12 |
Fabrication, characterization and application of phthalocyanine-magnetite hybrid nanofibersModisha, Phillimon Mokanne January 2014 (has links)
Magnetic nanoparticles comprising magnetite (Fe3O4) were functionalized with 3-aminopropyl-triethoxysilane forming amino functionalized magnetite nanoparticles (AMNPs). The amino group allows for conjugation with zinc octacarboxyphthalocyanine (ZnOCPc) or zinc tetracarboxyphthalocyanine (ZnTCPc) via the carboxyl group to form an amide bond. A reduced aggregation of ZnTCPc is observed after conjugation with AMNPs. The thermal stability, conjugation, morphology and the sizes of the nanoparticles and their conjugates were confirmed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and Powder X-ray diffractometry (PXRD), respectively. The covalent linkage of AMNPs to ZnOCPc or ZnTCPc resulted in improvement in the photophysical behavior of the phthalocyanines. Improvement in the triplet quantum yield (ΦT), singlet oxygen quantum yield (ΦΔ), triplet lifetime (τT) and singlet oxygen lifetime (τΔ) of the ZnOCPc or ZnTCPc were observed, hence improving the photosensitizers efficiency. The conjugates comprising of zinc octacarboxyphthalocyanine (ZnOCPc) and AMNPs were electrospun into fibers using polyamide-6 (PA-6). This was used for the photodegradation of Orange-G and compared with ZnOCPc-AMNPs in suspension. For ZnOCPc-AMNPs in suspension, it is noteworthy that the catalyst can be easily recovered using an external magnetic field. The singlet oxygen generation increases as we increase the fiber diameter by increasing the ZnOCPc concentration. The singlet oxygen quantum yield is higher for PA-6/ZnOCPc-AMNPs nanofibers when compared to PA-6/ZnOCPc. The rate of degradation of Orange-G increased with an increase in the singlet oxygen quantum yield. Moreover, the kinetic analysis showed that the photodecomposition of Orange-G is a first-order reaction according to the Langmuir-Hinshelwood model.
|
13 |
Electrospun fibre based colorimetric probes for biological moleculesMudabuka, Boitumelo January 2014 (has links)
The thesis reports the use of electrospun nanofibres as a platform for the development of colorimetric probes. Three colorimetric probes in the form of electrospun nanofibre test strips were developed for the selective detection of ascorbic acid and dopamine because they are crucial biomolecules for physiological processes in human metabolism and usually coexist in biological samples. The simultaneous detection of the biomolecules is very important as their abnormal concentration levels would lead to diseases such as Parkinson's and schizophrenia. Different methods of incorporating detector agents into the nanofibre were exploited for the detection of the biomolecules. The methods included physical incorporation of nanoparticles, covalent bonding of ligand/dyes through surface modification of the fibres. The first colorimetric test strip for ascorbic acid was based on copper-gold alloy nanoparticles prepared in-situ and hosted in nylon6. The test strip showed selectivity in detecting ascorbic acid in the pH range 2 – 7. The suitability of fibres in hosting copper-gold alloy nanoparticles for the colorimetric detection of ascorbic acid was investigated using nylon6, poly(vinyl benzyl chloride)-styrene and cellulose acetate based test strips. All the test strips exhibited leaching and the nylon6 based test strip was found to be thermally stable up to 60 ˚C. The colorimetric performance of the test strips was maintained and neither was colour decay exhibited after 10 months of storage in a shelf. The test strip achieved an eye-ball limit of detection of 1.76 x10-2 mg L-1 and its suitability was demonstrated by the determination of ascorbic acid in fruit juices, urine, serum, and vitamin C tablets. The second colorimetric test strip for ascorbic acid and dopamine employed prussian blue synthesised in-situ in nylon6. Ascorbic acid turned the deep blue test strip to light blue at pH 3, and a faded navy blue colour at a pH range of 6 - 7 while dopamine changed the strip to purple at the same pH range. The versatility of the test strip was demonstrated by detecting ascorbic acid in commercial fruit juices as well as by detecting ascorbic acid as well as dopamine in fortified urine. The eye-ball detection limit of the Prussian blue test strip for ascorbic acid and dopamine was 17.6 mg L-1 and 18.9 mg L-1, respectively. The third method involved a covalent approach, where poly(vinylbenzyl chloride) nanofibers were post functionalised with 2-(2′-pyridyl)-imidazole and iron(III) for the selective detection of ascorbic acid and dopamine. The eye-ball detection limit for ascorbic acid and dopamine was 17.6 mg L-1 and 18.9 mg L-1, respectively. The test strip was selective for dopamine, but the detection of ascorbic acid suffered from interference by glutathione. The application of the test strips was nevertheless demonstrated by the detection of ascorbic acid in fruit juices and dopamine in fortified urine. The developed test strips employing the three approaches were applied without sample pre-treatment and use of supporting equipment.
|
14 |
Photocatalytic activity and antibacterial properties of Ag/N-doped TiO2 nanoparticles on PVAE-CS nanofibre supportOcwelwang, Atsile Rosy January 2012 (has links)
Lack of potable water is one of the major challenges that the world faces currently and the effects of this are mainly experienced by people in developing countries. This has therefore propelled research in advanced oxidation technologies AOTs to improve the current water treatment methods using cost effective, non toxic and efficient treatment methods. Hence, in this study the sol-gel synthesis method was used to prepare TiO2 nanoparticles that were photocatalytically active under UV and visible solar light as well as possessing antibacterial properties. Silver and nitrogen doping was carried out to extend the optical absorption of TiO2. For easy removal and reuse of the photocatalyst the nanoparticles were immobilized on chitosan and poly (vinyl-alcohol-co-ethylene) using the electrospining technique. The synthesized nanomaterials were characterized by FTIR, XRD, SEM/EDS, TEM, DRS, and TGA. FTIR and EDS analysis confirmed the formation and composition of TiO2 nanopowders for the doped and undoped nanoparticles. XRD analysis showed that the anatase phase was the dominant crystalline phase of the synthesized nanopowders. SEM and TEM respectively illustrated the distribution and size of the electrospun nanofibers and the nanoparticles of TiO2. DRS results showed that there was a significant shift in the absorption band edge and wavelength of Ag-TiO2 to 397 nm, followed by N-TiO2 at 396 nm compared to the commercial titania which was at 359 nm. The photocatalytic activities and antibacterial properties of these materials were tested on methylene blue dye and E.coli microorganism respectively. Ag-TiO2 immobilized on nanofibers of chitosan and PVAE had the highest photocatalytic activity compared to N-TiO2. Similar results were observed when the biocide properties of these materials were tested on E. coli.
|
15 |
Reinforcement of Hydrogels by Nanofiber NetworkGuo, Yuanhao 29 May 2013 (has links)
No description available.
|
16 |
Electrospinning Polymer Fibers for Design and Fabrication of New MaterialsLin, Yinan 10 August 2011 (has links)
No description available.
|
17 |
Multiscale fiber reinforced composites using a carbon nanofiber/epoxy nanophased matrix processing, properties, and thermochemical behavior /Green, Keith Jamahl. January 2007 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2007. / Description based on contents viewed Feb. 4, 2008; title from title screen. Includes bibliographical references (p. 77-81).
|
18 |
The antimicrobial efficacy of innovative 3D triple antibiotic paste-mimic tubular scaffold against actinomyces naeslundiiAzabi, Asma Abulqasem January 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Background: Root canal disinfection is an essential requirement for the success of regenerative endodontics. Currently, the so-called triple antibiotic paste (TAP) is considered the standard of care. Notwithstanding the good antimicrobial capacity, the high concentration of TAP has shown significant toxicity to human cells, especially dental pulp stem cells. A novel drug release system, i.e., a triple antibiotic paste-mimic electrospun scaffold containing low concentrations of the antibiotics present in the TAP, has emerged as an effective and reliable alternative to fight root canal infections without potential toxic effects on dental stem cells, which are an integral part of the regenerative treatment. Objectives: The aim of this study was to determine the antimicrobial efficacy of an innovative three-dimensional (3D) triple antibiotic paste-mimic tubular scaffold against Actinomyces naeslundii biofilm formed inside human root canal dentinal tubules.
Materials and methods: Pure polydioxanone (PDS) polymer solution and PDS loaded with metronidazole, ciprofloxacin and minocycline (35 wt.% of each antibiotic, 3D-TAP-mimic scaffold) were spun into 3D fibrous scaffolds. A. naeslundii (ATCC 43146) was centrifuged to induce biofilm formation inside human root canal dentinal tubules using a dentin slice model (1 mm thickness and 2.5 mm canal diameter). The infected dentin slices were exposed to the 3D-TAP-mimic scaffold, TAP solution (50 mg/mL of each antibiotic), and antibiotic-free PDS. Biofilm elimination was quantitatively and qualitatively analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), respectively.
Results: A dense penetration of A. naeslundii biofilm was observed by CLSM throughout the dentinal tubules. 3D-TAP-mimic scaffold significantly reduced the percentage of viable bacteria compared with PDS (p <.05). TAP solution completely eliminated viable bacteria without differing from 3D-TAP-mimic scaffolds. SEM images showed results similar to CLSM.
Conclusion: Collectively, the proposed tubular 3D-TAP-mimic scaffold holds significant clinical potential for root canal disinfection strategy prior to regenerative endodontics.
|
19 |
Synthesis of functional inorganic nanofibers using cellulose nanofibers as templates / セルロースナノファイバーを鋳型に用いた機能性無機ナノファイバーの合成Gunji, Shunsuke 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20385号 / 工博第4322号 / 新制||工||1670(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 三浦 清貴, 教授 田中 勝久, 教授 木村 俊作 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
20 |
Electrospinning Polymer Nanofibers-Electrical and Optical CharacterizationKhan, Saima N. January 2007 (has links)
No description available.
|
Page generated in 0.0523 seconds