• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 33
  • 10
  • 10
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Energeticky disperzní rentgenová spektroskopie dopovaných vláken PVDF / Energy dispersive X-ray spectroscopy of doped PVDF fibers

Smejkalová, Tereza January 2021 (has links)
Tato diplomová práce zkoumá flexibilní materiál k produkci elektřiny založený na piezoelektrickém polymeru Polyvinylidenfluorid (PVDF). Inkorporací piezoaktivní keramiky lze vlastnosti piezoelektrického polymeru PVDF významně zlepšit a převést na užitečnou elektrickou energii. PVDF byl vytvořen elektrostatickým zvlákňováním do vláken o tloušťce 1,5-0,3 µm a poté studován různými analytickými metodami. Tato práce nabízí popis elektrostatického zvlákňování, přípravu vzorků a teoretický úvod do analytických metod, kterým byly vzorky podrobeny. Morfologie a distribuce nanostrukturované keramiky do polymerní matrice PVDF byla pozorována použitím skenovací elektronové mikroskopie (SEM) a energiově disperzní spektroskopie (EDX). Pro tvorbu fáze a podrobné fázové složení byly vzorky charakterizovány infračervenou spektroskopií s Fourierovou transformací (FTIR). Práce také obsahuje analýzu s použitím Ramanovy spektroskopie, metody používané k identifikaci a porovnání chemických sloučenin. Elektrické vlastnosti byly studovány dielektrickou spektroskopií a je poskytnuta korelace se složením. Jednotlivé komponenty dotovaných vláken jsou charakterizovány a vyhodnocovány v souvislosti s jejich budoucím využitím v senzorech.
32

Study and development of electrospun fibers for biotechnology application / Etude et développement de fibres électrofilées pour des applications en biotechnologie

Chaves Vieira Lins, Luanda 19 July 2016 (has links)
Actuellement, le procédé d’électrofilage également appelé electrospinning est une des voies les plus prometteuses permettant le design et le développement de nanofibres polymères poreuses. En effet, cette technique est simple d’utilisation, unique, modulable, à faible coût et est déjà couramment utilisée dans le milieu industriel. De part ces avantages, l’electrospinning fait l’objet d’un engouement grandissant de la recherche académique et industrielle dans plusieurs domaines d’applications tels que ceux de la filtration, la cosmétique, du textile, de l’ingénierie tissulaire et du domaine médical, notamment pour le relargage de molécules actives. De plus, cette technique est applicable sur de nombreux polymères synthétiques ou naturels et il est possible de contrôler de nombreux paramètres tels que la porosité, le diamètre des fibres ou encore la surface accessible. Un des premiers objectifs de cette thèse a été de développer des scaffolds pour le domaine de l’ingénierie des tissus neuronaux afin d’imiter les propriétés biologiques, physiques et mécaniques de la matrice extracellulaire native. Dans un premier temps, l’effet de l’alignement des fibres d’une matrice fluorée (PVDF) biocompatible a été étudié sur le comportement de cellules souches neurales de singe, en particulier les morphologies, l’adhésion cellulaire ainsi que leurs différentiations en cellules gliales ou neuronales. Dans un second temps, des scaffolds bioabsorbables composés de PLA et de PEG ont été synthétisés afin d’étudier l’influence de l’équilibre hydrophile-hydrophobe sur la culture de cellules souches neurales. Et dans une dernière partie, une véritable étude exploratoire a été réalisée afin de développer des textiles intelligents à base de PBAT contenant des curli, protéine bien connue pour sa capacité à chélater des métaux. / Currently, the electrospinning process is also one of the most promising routes for the design and development of polymer fibers. This technique is easy to use, unique, versatile, and low cost, which can be used to create fibers from a variety of starting materials. The structure, chemical and mechanical stability, functionality, and other properties of the fibers can be modified to match end applications. The first goal of this thesis was to develop scaffolds for the field of neural tissue engineering in order to mimic the biological, physical and mechanical properties of the native extracellular matrix. In the first time, the effect of fiber alignment of a biocompatible and fluorinated matrix denoted polyvinylidene fluoride (PVDF) was studied on the behavior of monkey neural stem cells particularly the morphology, cell adhesion and their differentiation in glial or neuronal cells. Secondly, bioabsorbable scaffolds composed of polylactide (PLA) and polyethylene glycol (PEG) polymers were synthesized to investigate the influence of the hydrophilic-hydrophobic balance on the culture of neural stem cells. Finally, an exploratory work was conducted to develop smart textiles based on poly(butylene adipate-co-terephthalate) (PBAT) containing curli as protein, well-known for its ability to chelate metals.
33

Application of Nanofibres in Polymer Composite Membranes for Direct Methanol Fuel Cells

Mollá Romano, Sergio 09 December 2015 (has links)
Tesis por compendio / [EN] Direct methanol fuel cells are feasible devices for efficient electrochemical power generation if some issues can be solved regarding both electrodes and membranes. The research carried out in this Ph.D. thesis has particularly focused on the concerns associated with the membranes. Nafion is the most standard fuel cell membrane material due to its high proton conductivity and exceptional chemical and mechanical stability. However, it suffers from a considerably high methanol permeability and a limited operating temperature (< 80 ºC). The first aspect was addressed with the use of PVA nanofibres and the second one replacing Nafion with SPEEK-based polymers. Composite membranes of Nafion with PVA nanofibres, surface functionalised with sulfonic acid groups, exhibited lower methanol permeabilities due to the intrinsic barrier property of PVA, although proton conductivity was also affected as a result of the non-conducting behaviour of the bulk PVA phase. Remarkably, the nanofibres provided strong mechanical reinforcement which enabled the preparation of low thickness membranes (< 20 micrometres) with reduced ohmic losses, thus counteracting their lower proton conductivities. SPEEK-based membranes were examined for DMFC operation within the intermediate temperature range of 80-140 ºC, in which sluggish electrochemical reactions at the electrodes are accelerated and proton conductivity activated. SPEEK was blended and crosslinked with PVA and PVB polymers for avoiding its dissolution in hot water conditions. SPEEK-PVA compositions showed practical proton conductivities and SPEEK-PVB blends presented very low methanol permeabilities. Nanocomposite membranes composed of SPEEK-30%PVB nanofibres embedded in a SPEEK-35%PVA matrix were prepared and characterised. A nanocomposite membrane crosslinked at 120 ºC revealed promising results for DMFCs operating at intermediate temperatures. Electrospinning is concluded to be a suitable technique for obtaining polymer nanofibre mats intended for advanced composite membranes with improved characteristics and fuel cell performances. / [ES] Las pilas de combustible de metanol directo son dispositivos factibles para la generación electroquímica eficiente de energía eléctrica si se pueden solucionar algunas cuestiones relacionadas tanto con los electrodos como las membranas. La investigación llevada a cabo en esta tesis doctoral se ha centrado particularmente en los problemas asociados con las membranas. Nafion es el material de membrana más común para pilas de combustible debido a su alta conductividad protónica y excepcional estabilidad química y mecánica. Sin embargo, padece una considerablemente alta permeabilidad al metanol y una limitada temperatura de operación (< 80 ºC). El primer aspecto se abordó con el uso de nanofibras de PVA y el segundo reemplazando Nafion con polímeros basados en SPEEK. Membranas compuestas de Nafion con nanofibras de PVA, funcionalizadas en su superficie con grupos ácidos sulfónicos, exhibieron menores permeabilidades al metanol debido a la propiedad barrera intrínseca del PVA, aunque la conductividad protónica también se vio afectada como resultado del comportamiento global no conductor de la fase de PVA. Remarcablemente, las nanofibras proporcionaron un refuerzo mecánico fuerte que permitió la preparación de membranas de bajo espesor (< 20 micrómetros) con unas pérdidas óhmicas reducidas, así contrarrestando sus menores conductividades protónicas. Se examinaron membranas basadas en SPEEK para la operación de pilas de combustible de metanol directo dentro del rango intermedio de temperaturas entre 80-140 ºC, en el que las lentas reacciones electroquímicas en los electrodos se aceleran y la conductividad protónica se activa. El SPEEK se combinó y entrecruzó con los polímeros de PVA y PVB para evitar su disolución en condiciones de agua caliente. Las composiciones de SPEEK-PVA mostraron conductividades protónicas funcionales y las mezclas de SPEEK-PVB presentaron permeabilidades al metanol muy bajas. Se prepararon y caracterizaron membranas nanocompuestas constituidas por nanofibras de SPEEK-30%PVB embebidas en una matriz de SPEEK-35%PVA. Una membrana nanocompuesta entrecruzada a 120 ºC reveló resultados prometedores para pilas de combustible de metanol directo operando a temperaturas intermedias. Se puede concluir que la electrohilatura es una técnica apropiada para la obtención de mallas de nanofibras poliméricas destinadas a membranas compuestas avanzadas con características y rendimientos en pilas de combustible mejorados. / [CA] Les piles de combustible de metanol directe són dispositius factibles per a la generació electroquímica eficient d'energia elèctrica si es poden solucionar algunes qüestions relacionades tant amb els elèctrodes com les membranes. La investigació duta a terme en esta tesi doctoral s'ha centrat particularment en els problemes associats amb les membranes. Nafion és el material de membrana més comú per a piles de combustible a causa de la seua alta conductivitat protònica i excepcional estabilitat química i mecànica. No obstant això, patix una considerablement alta permeabilitat al metanol i una limitada temperatura d'operació (< 80 ºC). El primer aspecte es va abordar amb l'ús de nanofibres de PVA i el segon reemplaçant Nafion amb polímers basats en SPEEK. Membranes compostes de Nafion amb nanofibres de PVA, funcionalizades en la seua superfície amb grups àcids sulfónics, van exhibir menors permeabilitats al metanol a causa de la propietat barrera intrínseca del PVA, encara que la conductivitat protònica també es va veure afectada com resultat del comportament global no conductor de la fase de PVA. Remarcablement, les nanofibres van proporcionar un reforç mecànic fort que va permetre la preparació de membranes de baixa grossària (< 20 micròmetres) amb unes pèrdues òhmiques reduïdes, així contrarestant les seues menors conductivitats protòniques. Es van examinar membranes basades en SPEEK per a l'operació de piles de combustible de metanol directe dins del rang intermedi de temperatures entre 80-140 ºC, en el que les lentes reaccions electroquímiques en els elèctrodes s'acceleren i la conductivitat protònica s'activa. El SPEEK es va combinar i va entrecreuar amb els polímers de PVA i PVB per a evitar la seua dissolució en condicions d'aigua calenta. Les composicions de SPEEK-PVA van mostrar conductivitats protòniques funcionals i les mescles de SPEEK-PVB van presentar permeabilitats al metanol molt baixes. Es van preparar i caracteritzar membranes nanocompostes constituïdes per nanofibres de SPEEK-30%PVB embegudes en una matriu de SPEEK-35%PVA. Una membrana nanocomposta entrecreuada a 120 ºC va revelar resultats prometedors per a piles de combustible de metanol directe operand a temperatures intermèdies. Es pot concloure que l'electrofilatura és una tècnica apropiada per a l'obtenció de malles de nanofibres polimériques destinades a membranes compostes avançades amb característiques i rendiments en piles de combustible millorats. / Mollá Romano, S. (2015). Application of Nanofibres in Polymer Composite Membranes for Direct Methanol Fuel Cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58611 / Premios Extraordinarios de tesis doctorales / Compendio

Page generated in 0.033 seconds