• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo computacional de nanoligas de platina utilizando a teoria do funcional da densidade / Computational study of platinum nanoalloys using density functional theory

Nomiyama, Ricardo Kita 15 January 2015 (has links)
Nanoclusters a base de platina vêm sendo amplamente estudados devido à possibilidade de ajustar suas propriedades físicas e químicas através da manipulação de seu tamanho, forma e composição. No entanto, nossa compreensão em nível atomístico dos mecanismos que determinam a estabilidade desses sistemas está longe de ser ideal. Nesta dissertação de mestrado, utilizamos a teoria do funcional da densidade, empregando o método de projeção de onda aumentada com a aproximação do gradiente generalizado, para investigar as propriedades enérgicas, estruturais e eletrônicas de nanoligas PtnMT55-n (MT = Fe, Co, Ni, Cu, Zn). Usando uma energia relativa (energia excedente) para medir a estabilidade de uma nanoliga, sendo obtidas as seguintes composições de menor energia: Pt35Fe20, Pt42Co13, Pt28Ni27, Pt20Cu35 e Pt20Zn35. Com exceção da estrutura do tipo caroço-casca Pt42Co13 icosaedrica (ICO), os demais sistemas possuem ambos os átomos Pt e MT expostos diretamente à região de vácuo, o que é interessante para reações químicas. Das análises estruturais, obtivemos a relação entre tamanho, ordem de ligação e tendência de segregação. Para Zn55 e Pt55, as estruturas de caroço reduzido (RCORE) são preferidas, enquanto para MTs como Fe, Co, Ni e Cu que são menores do que a Pt em 10.6, 11.3, 11.3 e 8,5%, a geometria icosaedrica é favorecida. Portanto, a combinação de Pt com átomos de MT em uma nanoliga (PtMT) favorece a configuração ICO para átomos de MT pequenos (Fe, Co, Ni e Cu), devido a grande liberação de tensão. Já PtnZn55-n que apresentam pequena diferença de tamanho (Zn é menor do que a Pt em apenas 2,1%), consequentemente, a estabilização de estrutura ICO não é possível e uma estrutura RCORE é obtida para todas as composições analisadas. A posição do centro de gravidade dos estados-d ocupados em relação ao nível de Fermi pode ser ajustada em função da composição de Pt. Assim, a energia de adsorção do adsorbato para o nanoligas pode ser alterada, o que afeta a reatividade das nanoligas PtnMT55-n. / Platinum-based nanoclusters have been widely studied due to the possibility to tune their physical and chemical properties through size, shape, and composition. However, our atom-level understanding of the mechanisms that determines the stability of those systems is far from ideal. In this dissertation, we use the density functional theory, using the projected augmented wave method with the generalized gradient approximation, to investigate the energetic, structural, and electronic properties of the PtnTM55-n (TM = Fe, Co, Ni, Cu, Zn) nanoclusters. Using a relative energy (excess energy) to measure the stability of a nanoalloy, we have obtained the lowest energy compositions Pt20Fe35, Pt42Co13, Pt28Ni27, Pt20Cu35, and Pt20Zn35. Except for the core-shell Pt42Co13 icosahedron (ICO) structure, the other systems have both Pt and TM atoms exposed directly to the vacuum region, which is interesting for chemical reactions. From structural analyses we have obtained an interplay of size mismatch, bond-order parameter, and the segregation tendency. For Zn55 and Pt55, the reduced-core (RCORE) structures are preferred, while for small size TMs, like Fe, Co, Ni, and Cu that are smaller than Pt by 10.6, 11.3, 11.3, and 8.5%, the icosahedral geometry is stabilized. The combination of Pt with TM atoms in a nanoalloy (PtTM) favors the ICO configuration for small TM atoms (Fe, Co, Ni, and Cu), because of the larger release of the strain energy. PtnZn55-n presents a small size mismatch (Zn is smaller than Pt by only 2.1%), consequently, the ICO stabilization is not possible and RCORE structure is obtained for all compositions. The position of the center of the gravity of the occupied d -states in relation to the Fermi level can be tuned as a function of the Pt composition. Thus, the adsorption energy of adsorbate to the nanoalloys can be changed, which can affect the reactivity of the PtnTM55-n nanoclusters.
2

Investigação ab initio dos mecanismos de formação de nanoligas core-shell com platina e metais de transição dos períodos 3d, 4d e 5d / Ab initio investigation of mechanisms of formation of core-shell nanoalloys with platinum and 3d, 4d, and 5d transition metals

Justo, Stella Granatto 06 December 2017 (has links)
Nanoligas bimetálicas têm atraído a atenção de pesquisadores nas últimas décadas devido a possibilidade de ajustar suas propriedades físico-químicas, tais como propriedades elétricas, ópticas, magnéticas e de reatividade, por meio da variação do número de átomos, da composição química e do formato geométrico. As nanoligas bimetálicas que combinam Pt com outros metais são especificamente interessantes na área de catálise heterogênea, devido a possibilidade de se obter materiais com propriedades distintas de seus respectivos sistemas unários no que se refere ao surgimento ou aumento da atividade catalítica, à seletividade e, muitas vezes, ao preço reduzido. Esse trabalho tem como objetivo investigar as propriedades estruturais, energéticas, eletrônicas e de estabilidade de nanoligas bimetálicas core-shell de 55 átomos que combinam Pt com metais de transição (MT) pertencentes às séries de transição 3d, 4d e 5d dos grupos de Fe a Zn. Esses sistemas foram estudados utilizando cálculos de primeiros princípios (ab initio) baseados na teoria do funcional da densidade, tal como implementada no código computacional VASP (Vienna Ab initio Simulation Package). As nanoligas putativas de mínimo global energético (pGMC) de composição Pt13MT42 e Pt42MT13 calculadas nesse estudo apresentaram características particulares quanto à geometria e ao arranjo das espécies metálicas na nanoliga. Ao que diz respeito aos arranjos core-shell, foram observados dois arranjos em que a fica Pt no caroço (Pt13Ag42 e Pt13 Au42) e sete arranjos em que a Pt fica na superfície (Pt42Fe13, Pt42Co13, Pt42Ni13, Pt42Cu13, Pt42Ru13, Pt42Rh13 e Pt42Os13). Os mecanismos que levam à formação destas e das demais nanoligas pGMC foram investigados com base em três fatores: raio atômico, energia de superfície e cargas de Bader. Verificou-se que raio e a energia de superfície competem como fator determinante pelas posições preferenciais de cada espécie metálica na nanoliga. Nos casos em que houve divergência, o raio apresentou-se como o fator de maior importância, entretanto, quando o raio das espécies são muitos próximos, a energia de superfície exerce um papel de maior importância. A partir da análise de cargas de Bader, observou-se ocorrência de transferência de carga da região do caroço para a região da superfície para a maioria das nanoligas. No mais, observou-se que as nanoligas core-shell contam com atração coulômbica de maior magnitude do que as demais nanoligas pGMC, como resultado de altas cargas de sinal oposto em cada uma das regiões. / Bimetallic nanoalloys have been attracting attention since the last decades due to the possibility of adjusting their physical-chemical properties, such as electrical, optical, magnetic and reactivity properties, by means of the variation of the number of atoms, chemical composition and geometry. Bimetallic nanoalloys that combine Pt with other metals are especially interesting for heterogeneous catalysis given the possibility of obtaining materials with properties that differ from their respective unary systems regarding the appearance or increase of catalytical activity, selectivity and, in many cases, reduced cost. The aim of this work is the evaluation of the stability and of structural, energetic and electronic properties of 55 atom core-shell bimetallic nanoalloys that combine Pt with transition metals (MT) from the 3d, 4d, and 5d transition periods from Fe to Zn groups. These systems were studied using first principle (ab initio) calculations based on density functional theory, as implemented in the VASP (Viena Ab initio Simulation Package) computer code. The nanoalloys with Pt13MT42 and Pt42MT13 compositions which were observed as putative global minimum configuration (pGMC) presented unique characteristics regarding their geommetry and the arrangement of the different metals within the nanoalloy. Considering the core-shell nanoalloys, two arrangements in which Pt is located in the core were observed (Pt13Ag42 e Pt13 Au42) as well as seven arrangements with Pt in the surface (Pt42Fe13, Pt42Co13, Pt42Ni13, Pt42Cu13, Pt42Ru13, Pt42Rh13 e Pt42Os13). The mechanisms that lead to the formation of these and of the remaining pGMC nanoalloys were investigated considering three factors: atomic radius, surface energy and Bader charges. It was verified that atomic radius and surface energy compete directly for the determination of preferential sites for the atoms in the nanoalloy. When these two factors diverge, the atomic radius is the most important factor. However, when the radii of the species involved are similar, the surface energy becomes the determining factor. In addition, Bader charges analysis showed that, for most nanoalloys, the core is positively charged and the shell accumulates negative charge, indicating that charge is transfered from the atoms in the core to the ones in the surface. Besides, the core-shell nanoalloys have a higher coulombic attraction in comparison with others pGMC, due to high quantities of charge with opposite sign in each region.
3

Investigação ab initio dos mecanismos de formação de nanoligas core-shell com platina e metais de transição dos períodos 3d, 4d e 5d / Ab initio investigation of mechanisms of formation of core-shell nanoalloys with platinum and 3d, 4d, and 5d transition metals

Stella Granatto Justo 06 December 2017 (has links)
Nanoligas bimetálicas têm atraído a atenção de pesquisadores nas últimas décadas devido a possibilidade de ajustar suas propriedades físico-químicas, tais como propriedades elétricas, ópticas, magnéticas e de reatividade, por meio da variação do número de átomos, da composição química e do formato geométrico. As nanoligas bimetálicas que combinam Pt com outros metais são especificamente interessantes na área de catálise heterogênea, devido a possibilidade de se obter materiais com propriedades distintas de seus respectivos sistemas unários no que se refere ao surgimento ou aumento da atividade catalítica, à seletividade e, muitas vezes, ao preço reduzido. Esse trabalho tem como objetivo investigar as propriedades estruturais, energéticas, eletrônicas e de estabilidade de nanoligas bimetálicas core-shell de 55 átomos que combinam Pt com metais de transição (MT) pertencentes às séries de transição 3d, 4d e 5d dos grupos de Fe a Zn. Esses sistemas foram estudados utilizando cálculos de primeiros princípios (ab initio) baseados na teoria do funcional da densidade, tal como implementada no código computacional VASP (Vienna Ab initio Simulation Package). As nanoligas putativas de mínimo global energético (pGMC) de composição Pt13MT42 e Pt42MT13 calculadas nesse estudo apresentaram características particulares quanto à geometria e ao arranjo das espécies metálicas na nanoliga. Ao que diz respeito aos arranjos core-shell, foram observados dois arranjos em que a fica Pt no caroço (Pt13Ag42 e Pt13 Au42) e sete arranjos em que a Pt fica na superfície (Pt42Fe13, Pt42Co13, Pt42Ni13, Pt42Cu13, Pt42Ru13, Pt42Rh13 e Pt42Os13). Os mecanismos que levam à formação destas e das demais nanoligas pGMC foram investigados com base em três fatores: raio atômico, energia de superfície e cargas de Bader. Verificou-se que raio e a energia de superfície competem como fator determinante pelas posições preferenciais de cada espécie metálica na nanoliga. Nos casos em que houve divergência, o raio apresentou-se como o fator de maior importância, entretanto, quando o raio das espécies são muitos próximos, a energia de superfície exerce um papel de maior importância. A partir da análise de cargas de Bader, observou-se ocorrência de transferência de carga da região do caroço para a região da superfície para a maioria das nanoligas. No mais, observou-se que as nanoligas core-shell contam com atração coulômbica de maior magnitude do que as demais nanoligas pGMC, como resultado de altas cargas de sinal oposto em cada uma das regiões. / Bimetallic nanoalloys have been attracting attention since the last decades due to the possibility of adjusting their physical-chemical properties, such as electrical, optical, magnetic and reactivity properties, by means of the variation of the number of atoms, chemical composition and geometry. Bimetallic nanoalloys that combine Pt with other metals are especially interesting for heterogeneous catalysis given the possibility of obtaining materials with properties that differ from their respective unary systems regarding the appearance or increase of catalytical activity, selectivity and, in many cases, reduced cost. The aim of this work is the evaluation of the stability and of structural, energetic and electronic properties of 55 atom core-shell bimetallic nanoalloys that combine Pt with transition metals (MT) from the 3d, 4d, and 5d transition periods from Fe to Zn groups. These systems were studied using first principle (ab initio) calculations based on density functional theory, as implemented in the VASP (Viena Ab initio Simulation Package) computer code. The nanoalloys with Pt13MT42 and Pt42MT13 compositions which were observed as putative global minimum configuration (pGMC) presented unique characteristics regarding their geommetry and the arrangement of the different metals within the nanoalloy. Considering the core-shell nanoalloys, two arrangements in which Pt is located in the core were observed (Pt13Ag42 e Pt13 Au42) as well as seven arrangements with Pt in the surface (Pt42Fe13, Pt42Co13, Pt42Ni13, Pt42Cu13, Pt42Ru13, Pt42Rh13 e Pt42Os13). The mechanisms that lead to the formation of these and of the remaining pGMC nanoalloys were investigated considering three factors: atomic radius, surface energy and Bader charges. It was verified that atomic radius and surface energy compete directly for the determination of preferential sites for the atoms in the nanoalloy. When these two factors diverge, the atomic radius is the most important factor. However, when the radii of the species involved are similar, the surface energy becomes the determining factor. In addition, Bader charges analysis showed that, for most nanoalloys, the core is positively charged and the shell accumulates negative charge, indicating that charge is transfered from the atoms in the core to the ones in the surface. Besides, the core-shell nanoalloys have a higher coulombic attraction in comparison with others pGMC, due to high quantities of charge with opposite sign in each region.
4

Estudo computacional de nanoligas de platina utilizando a teoria do funcional da densidade / Computational study of platinum nanoalloys using density functional theory

Ricardo Kita Nomiyama 15 January 2015 (has links)
Nanoclusters a base de platina vêm sendo amplamente estudados devido à possibilidade de ajustar suas propriedades físicas e químicas através da manipulação de seu tamanho, forma e composição. No entanto, nossa compreensão em nível atomístico dos mecanismos que determinam a estabilidade desses sistemas está longe de ser ideal. Nesta dissertação de mestrado, utilizamos a teoria do funcional da densidade, empregando o método de projeção de onda aumentada com a aproximação do gradiente generalizado, para investigar as propriedades enérgicas, estruturais e eletrônicas de nanoligas PtnMT55-n (MT = Fe, Co, Ni, Cu, Zn). Usando uma energia relativa (energia excedente) para medir a estabilidade de uma nanoliga, sendo obtidas as seguintes composições de menor energia: Pt35Fe20, Pt42Co13, Pt28Ni27, Pt20Cu35 e Pt20Zn35. Com exceção da estrutura do tipo caroço-casca Pt42Co13 icosaedrica (ICO), os demais sistemas possuem ambos os átomos Pt e MT expostos diretamente à região de vácuo, o que é interessante para reações químicas. Das análises estruturais, obtivemos a relação entre tamanho, ordem de ligação e tendência de segregação. Para Zn55 e Pt55, as estruturas de caroço reduzido (RCORE) são preferidas, enquanto para MTs como Fe, Co, Ni e Cu que são menores do que a Pt em 10.6, 11.3, 11.3 e 8,5%, a geometria icosaedrica é favorecida. Portanto, a combinação de Pt com átomos de MT em uma nanoliga (PtMT) favorece a configuração ICO para átomos de MT pequenos (Fe, Co, Ni e Cu), devido a grande liberação de tensão. Já PtnZn55-n que apresentam pequena diferença de tamanho (Zn é menor do que a Pt em apenas 2,1%), consequentemente, a estabilização de estrutura ICO não é possível e uma estrutura RCORE é obtida para todas as composições analisadas. A posição do centro de gravidade dos estados-d ocupados em relação ao nível de Fermi pode ser ajustada em função da composição de Pt. Assim, a energia de adsorção do adsorbato para o nanoligas pode ser alterada, o que afeta a reatividade das nanoligas PtnMT55-n. / Platinum-based nanoclusters have been widely studied due to the possibility to tune their physical and chemical properties through size, shape, and composition. However, our atom-level understanding of the mechanisms that determines the stability of those systems is far from ideal. In this dissertation, we use the density functional theory, using the projected augmented wave method with the generalized gradient approximation, to investigate the energetic, structural, and electronic properties of the PtnTM55-n (TM = Fe, Co, Ni, Cu, Zn) nanoclusters. Using a relative energy (excess energy) to measure the stability of a nanoalloy, we have obtained the lowest energy compositions Pt20Fe35, Pt42Co13, Pt28Ni27, Pt20Cu35, and Pt20Zn35. Except for the core-shell Pt42Co13 icosahedron (ICO) structure, the other systems have both Pt and TM atoms exposed directly to the vacuum region, which is interesting for chemical reactions. From structural analyses we have obtained an interplay of size mismatch, bond-order parameter, and the segregation tendency. For Zn55 and Pt55, the reduced-core (RCORE) structures are preferred, while for small size TMs, like Fe, Co, Ni, and Cu that are smaller than Pt by 10.6, 11.3, 11.3, and 8.5%, the icosahedral geometry is stabilized. The combination of Pt with TM atoms in a nanoalloy (PtTM) favors the ICO configuration for small TM atoms (Fe, Co, Ni, and Cu), because of the larger release of the strain energy. PtnZn55-n presents a small size mismatch (Zn is smaller than Pt by only 2.1%), consequently, the ICO stabilization is not possible and RCORE structure is obtained for all compositions. The position of the center of the gravity of the occupied d -states in relation to the Fermi level can be tuned as a function of the Pt composition. Thus, the adsorption energy of adsorbate to the nanoalloys can be changed, which can affect the reactivity of the PtnTM55-n nanoclusters.
5

Propriedades estruturais e eletrônicas de partículas de 13 e 55 átomos de metais de transição / Structural and electronic properties of 13- and 55-atoms transition metal particles

Piotrowski, Maurício Jeomar 01 June 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this thesis we performed a theoretical study of the structural, electronic, and magnetic properties of transition metal (TM) particles using two models, with 13 and 55 atoms to describe clusters, nanoparticles (NPs), nanoalloys, protected NPs, and adsorption on clusters by Density Functional Theory. Firstly, we performed a systematic study for 3d, 4d, and 5d TMs of the Periodic Table using clusters with 13 atoms. This study gives the trends of the properties as function of the d occupation. We implemented a strategy to obtain the clusters structures, which is based on high-temperature molecular dynamic calculations and simulated annealing. New lower energy configurations were identified for some 13 atom clusters and previous known structures were confirmed. The following conclusions were identified: (i) The analysis of the binding energies and average bond lengths show a parabolic-like shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states. (ii) Ground state structures are seen to depend on the d band occupation, with compact icosahedral-like (ICO) forms at the beginning of each metal series, more opened structures such as hexagonal bilayer-like (HBL) and double simple-cubic (DSC) layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (iii) For Au13, we found that spin-orbit coupling favors 3D structures, i.e., a 3D structure is about 0.10 eV lower in energy than the previously assumed lowest energy 2D configuration. (iv) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. Several trends are similar for clusters and bulk, however, the atomic structures for Ru13, Rh13, Os13, and Ir13 are considered unexpected, since the respective elemental crystals crystallize in compact structures. In this context, we employed different local, semilocal, and non-local exchange and correlation energy functional, to understand the performance of different exchange and correlation schemes in the prediction of the physical and chemical properties of TM clusters. The local and semilocal functionals confirm the DSC configuration as the lowest energy structure for the studied TM13 clusters. A good agreement in the relative total energies is obtained even for structures with small energy differences, i.e., the PBE (Perdew, Burke, and Ernzerhof) results are confirmed. With the study employing PBE+U and hybrid functionals we found that a partial correction of the self-interaction problem decreases the relative stability of opened structures such as the DSC, and hence, compact structures became the lowest energy ones. The sd hybridization helps to explain the dependence of the structural stabilities with the self-interaction correction. We found that, for Co13 and Rh13, the sd hybridization decreases for DSC and increases for ICO. The study of NO adsorption on TM13 clusters, such as: Rh13, Pd13, Ir13 and Pt13, and the comparison with the results obtained for the respective TM(111) surfaces, allowed the finding that the adsorption on clusters changes significantly, with a strong dependence of the chemical environment close to the adsorption sites, whereas the trend obtained for the characteristic geometric parameters are similar to those observed for NO/TM (111). For the TM55 we get that Co55 and Rh55 NPs have ICO lowest energy structures, contrarily to the respective 13 atoms clusters. For Pt55 and Au55 NPs we found a non-icosahedral structure, with lower symmetry and the reduced core size, 7 - 9 atoms, which is very important for catalysis due to the larger number of atoms at the surface. After the TM55 study, we performed the study for PtnTM55-n (TM = Co, Rh, Au) nanoalloys as a function of the composition (n). It is confirmed that PtTM NPs prefer a composition pattern where the Co and Rh (Pt) atoms are in the core region and Pt (Au) atoms are at the surface region. Furthermore, we get that PtnRh55-n and, especially, PtnCo55-n tend to form alloys, mainly between n = 28 42 and n = 20 42, where the core-shell ICO configurations (Pt42Co13 and Pt42Rh13) are stable for both systems, due to the different atomic sizes that cause a release of stress in the NPs. For PtnAu55-n nanoalloys only n = 13 is energetically favorable, forming a core-shell structure. For the other compositions of PtAu we have the same trend as for the crystalline alloys reported experimentally, i.e., non-alloy formation. The effects on the catalytic properties of mixing two-TMs can be understood through the shift of the gravity center of the d occupied states. In this analysis, we observed that it is possible to obtain PtTM nanoalloys that can be more affordable and have better catalytic properties than pure Pt NPs. In terms of magnetic properties, we found that Pt55 and Co55 have smaller and larger values of magnetic moments, respectively, so PtCo follows the tendency where the Co atoms dominate the magnetic properties. For PtRh, the magnetic moment values are higher than for pure NPs. In the case of PtAu we observed the same trend, although with a lower magnitude. The lowest energy structures for Pt55 and Au55 are non-icosahedral, with an unexpectedly small core. Thus, we study these systems adding ligands, and verifying the changes in the stability. We studied the interaction of TM NPs with ligands such as: PH3, PH2, and SH2, in order to verify the changes in stability, structural, and electronic properties. We obtained that the relative stability differences between ICO and LOW (lowest energy configuration) structures decreases with the use of ligands. The LOW structures are not the most stable (Au) or very similar in energy than ICO structures (Pt) when 18 ligands are added to NPs. / Nesta tese de doutorado realizou-se o estudo teórico das propriedades estruturais, eletrônicas e magnéticas de partículas de metais de transição (TMs) utilizando modelos com 13 e 55 átomos para descrever clusters, nanopartículas (NPs), nanoligas, NPs protegidas por ligantes e adsorção sobre clusters, via Teoria do Funcional da Densidade. Primeiramente, realizou-se um estudo sistemático dos TMs 3d, 4d e 5d da Tabela Periódica usando o modelo de clusters com 13 átomos. Este estudo possibilitou a obtenção de tendências nas propriedades dos clusters em relação à ocupação dos estados d. Fazendo-se uso de uma estratégia de obtenção de estruturas de mais baixa energia baseada em simulações de dinâmica molecular e simulated annealing, foi possível não só obter as estruturas mais estáveis reportadas na literatura, mas também novas configurações de mais baixa energia ainda não reportadas. As seguintes conclusões foram obtidas: (i) A energia de ligação e o comprimento médio de ligação possuem uma curvatura parabólica em função da ocupação dos estados d e, assim, muitas das propriedades podem ser explicadas pelo modelo de níveis ligante e antiligante. (ii) Estruturas compactas do tipo icosaédricas (ICO) são energeticamente favoráveis no início de cada série; estruturas mais abertas, tais como bicamada hexagonal (HBL) e cúbica simples dupla (DSC) são energeticamente favoráveis no meio de cada série e estruturas com um alto número de coordenação ocorrem para grandes ocupações dos estados d. (iii) Para o caso específico de Au13, verificou-se que o acoplamento spin-órbita favorece estruturas 3D, ou seja, a estrutura 3D é 0,10 eV mais estável que a configuração de mais baixa energia 2D, a qual era tida como a mais estável na literatura. (iv) As interações de troca magnética possuem um importante papel para sistemas tais como Fe, Cr e Mn. Verificou-se que muitas tendências são compartilhadas por clusters e os respectivos cristais. Estruturas inesperadas (DSC), abertas e com baixa coordenação, foram obtidas para Ru13, Rh13, Os13 e Ir13, contrastando com os cristais, que possuem estruturas fechadas. A excepcionalidade destas estruturas abertas levou-nos a investigar a influência de diferentes aproximações para o termo de troca e correlação (locais, semilocais e não locais) na determinação das estruturas de equilíbrio destes clusters. O emprego de funcionais locais e semilocais confirmou a estrutura DSC como sendo a mais estável e apresentou boa concordância nas energias relativas obtidas, mesmo para estruturas com pequenas diferenças de energia, ou seja, confirmou-se os resultados obtidos com o funcional PBE (Perdew, Burke e Ernzerhof). No entanto, o emprego de abordagens utilizando as aproximações PBE+U e funcional híbrido aplicados para alguns sistemas, mostrou que o aumento da localização eletrônica influencia diretamente a estabilidade dos clusters. A correção parcial do problema de auto-interação aumenta a estabilidade das estruturas fechadas. A hibridização sd auxilia na explicação da estabilidade estrutural, já que esta decresce para as configurações DSC e aumenta para as ICO. O estudo da adsorção da molécula de NO sobre alguns dos TM13 de maior interesse na literatura: Rh13, Pd13, Ir13 e Pt13 e a comparação com os resultados obtidos para as respectivas superfícies de TM(111) possibilitou a constatação de que a adsorção sobre os clusters varia significativamente, com forte dependência do ambiente químico próximo aos sítios de adsorção; enquanto que as tendências obtidas para os parâmetros geométricos característicos são similares aos observados para NO/TM(111). Do estudo de TM55 obteve-se que as NPs de Co55 e Rh55 possuem a estrutura ICO como sendo a mais estável, enquanto que estruturas HBL e DSC foram obtidas respectivamente para Co13 e Rh13. Já para Pt55 e Au55 uma estrutura não-icosaédrica é obtida como sendo a mais estável, com baixa simetria e com o tamanho de caroço reduzido, 7 9 átomos, fato que tem conseqüências diretas para aplicações em catálise, devido a maior quantidade de átomos na superfície. Após o estudo de NPs de TM55 estudou-se nanoligas de PtnTM55-n (TM = Co, Rh, Au) em função da composição (n), verificou-se que as NPs de PtTM preferem um padrão de composição com os átomos de Co ou Rh (Pt) na região do caroço e os átomos de Pt (Au) na região de superfície. Obteve-se que PtnRh55-n e, especialmente, PtnCo55-n tendem a formar ligas, principalmente entre n = 28 42 e n = 20 42, sendo que as configurações core-shell ICO (Pt42Co13 e Pt42Rh13) são estáveis para esses sistemas, devido a diminuição do stress causada pelas diferenças de tamanhos atômicos. Já para PtnAu55-n apenas a composição n = 13 é favorável (estrutura core-shell), as demais composições não são favorecidas energeticamente, da mesma forma como ocorre para as fases cristalinas. Mostrou-se que os efeitos da mistura de dois TMs nas propriedades catalíticas podem ser entendidos por meio do deslocamento do centro de gravidade dos estados d ocupados. Desta análise, observou-se a possibilidade de obtenção de nanoligas PtTM que podem ser mais acessíveis economicamente e ter melhores propriedades catalíticas que NPs puras de Pt. Obteve-se que Pt55 e Co55 possuem baixos e altos valores de momento magnético, respectivamente, logo PtnCo55-n segue uma tendência onde os átomos de Co dominam o comportamento magnético. Para PtRh observou-se valores de momento magnético algumas vezes maiores que para as NPs puras e para o caso de PtAu temos a mesma tendência, porém em menor magnitude. Devido as estruturas inesperadas obtidas para as NPs Pt55 e Au55 estudou-se esses sistemas, acrescentando ligantes (PH3, SH2 e PH2), verificando assim, as alterações na estabilidade. Obteve-se que a diferença de estabilidade relativa entre as estruturas ICO e LOW (configuração de mais baixa energia) diminui com o emprego de ligantes. As estruturas LOW deixam de ser as mais estáveis (Au) ou ficam muito próximas em energia da estrutura ICO (Pt) quando 18 ligantes são adicionados às NPs.
6

Estudo das propriedades energéticas e estruturais dos sistemas ZrCu, ZrAl, CuAl e ZrCuAl por meio de simulação computacional / Study of energetic and structural properties of ZrCu, ZrAl, CuAl and ZrCuAl systems by computer simulation

Souza, Douglas Godoy de 04 May 2016 (has links)
Clusters e nanoclusters têm recebido grande atenção devido à suas propriedades físicas e químicas, as quais divergem bastante dos materiais na fase bulk. Essas propriedades podem variar de acordo com a composição e tamanho do cluster. Uma compreensão da evolução das propriedades em relação a estes parâmetros é de grande importância para potencializar diversas aplicações, entretanto, esse entendimento permanece insatisfatório. Este trabalho foi dividido em duas etapas, em que a primeira busca investigar parâmetros energéticos, por meio do cálculo da energia de excesso, e estruturais, analisando parâmetro de ordem química, função de distribuição radial central, comprimento médio de ligação e número de coordenação efetiva, dos sistemas ZrnCum-n, ZrnAlm-n, CunAlm-n e ZrnCunAlm-2n para n = 55 e 561 átomos com o incremento n tomado de 1 em 1 para o sistema de 55 átomos e de 20 em 20 para os sistemas de 561 átomos. A segunda etapa consiste de investigar como variam as propriedades energéticas e estruturais do sistema ZrCu em função da evolução do tamanho do sistema. Para alcançar os objetivos propostos, neste trabalho foi usado o algoritmo de otimização global de clusters e nanopartículas basin-hopping Monte Carlo revisado. O potencial de interação atômica utilizado é o método do átomo imerso, que é bastante utilizado na descrição de sistemas metálicos. Os resultados obtidos sugerem que: (i) os sistemas puros apresentaram energia de coesão mais alta que seu análogo material na fase bulk, sugerindo que estes tendem a aglomerar-se formando estruturas bulk. Para os sistemas binários e ternários, foi identificado que todas as composições são energeticamente estáveis devido aos valores negativos obtidos pelo excesso de energia e, para o sistema ZrCu verificou-se a presença de efeitos de tamanho. (ii) Com relação à estrutura, as composições puras estudadas apresentaram simetria icosaédrica. Para o estudo da evolução do tamanho do sistema, Zr e Cu apresentaram estrutura com simetria icosaédrica até a composição de 561 átomos, além deste tamanho a simetria icosaédrica é quebrada. Para os sistemas binários e ternários foi obtido que os átomos tendem a distribuir-se dentro do nanocluster além de apresentarem quebra da simetria icosaédrica apresentando ausência de camadas atômicas ordenadas acompanhada de redução da coordenação efetiva. Os sistemas ZrCu e ZrAl demonstraram seguir a lei de Vegard, enquanto que os sistemas CuAl e ZrCuAl apresentaram desvio da lei de Vegard providos por efeitos eletrônicos, além de apresentarem a presença de efeitos de tamanho. / Clusters and nanocluster have attracted great attention due to their physical and chemical properties, very different from their analogous bulk. These properties can vary with composition and size cluster. An understanding of the properties evolution with respect these parameters is essential to improve several applications. However, this understanding is not complete. This study was piecemeal in two stage, being the first the investigation of energetic properties, by excess energy analisys, and structural properties, by chemical order parameter, radial distribution function, effective coordination number and average bond length, from ZrnCum-n, ZrnAlm-n, CunAlm-n and ZrnCunAlm-2n systems, where n = 55, 561 atoms and the increment n vary in one unit for 55-atoms system and twenty unit for 561-atoms system. The second stage is the investigation of how vary the energetic and structural properties from the size evolution ZrCu system. To do this study, was employed the global optimization algorith for cluster and nanoparticle Revised basin-hopping Monte Carlo, were this method use the classical calculation to determine the total energy of the system. The interatomic potential used was the embedded atom method, that was very usefull to describe metallic systems. Our results suggest: (i) the unary systems present cohesive energy higher than their analogous bulk, that indicate the trend of clusters to form bulk. To the binary and ternary systems, we had that all systems are favorable to form nanoalloys by negative value of excess energy. From ZrCu system, the stability decrease when increase the size of system. With respect the structure, the unary compounds present icosahedral symmetry. From the size-evolution study, the unary compounds present icosahedral symmetry until 561-atoms composition, after this size the icosahedral symmetry is broken. To binary and ternary systems, the atoms trend form mixture into the nanocluster, the icosahedral symmetry is broken with respect the unary compounds and presenting absence of ordered layers followed by effective coordination reduction. The ZrCu and ZrAl systems follow the Vegard law, while the CuAl and ZrCuAl systems present deviation from Vegard law, because electronic effects.
7

Estudo das propriedades energéticas e estruturais dos sistemas ZrCu, ZrAl, CuAl e ZrCuAl por meio de simulação computacional / Study of energetic and structural properties of ZrCu, ZrAl, CuAl and ZrCuAl systems by computer simulation

Douglas Godoy de Souza 04 May 2016 (has links)
Clusters e nanoclusters têm recebido grande atenção devido à suas propriedades físicas e químicas, as quais divergem bastante dos materiais na fase bulk. Essas propriedades podem variar de acordo com a composição e tamanho do cluster. Uma compreensão da evolução das propriedades em relação a estes parâmetros é de grande importância para potencializar diversas aplicações, entretanto, esse entendimento permanece insatisfatório. Este trabalho foi dividido em duas etapas, em que a primeira busca investigar parâmetros energéticos, por meio do cálculo da energia de excesso, e estruturais, analisando parâmetro de ordem química, função de distribuição radial central, comprimento médio de ligação e número de coordenação efetiva, dos sistemas ZrnCum-n, ZrnAlm-n, CunAlm-n e ZrnCunAlm-2n para n = 55 e 561 átomos com o incremento n tomado de 1 em 1 para o sistema de 55 átomos e de 20 em 20 para os sistemas de 561 átomos. A segunda etapa consiste de investigar como variam as propriedades energéticas e estruturais do sistema ZrCu em função da evolução do tamanho do sistema. Para alcançar os objetivos propostos, neste trabalho foi usado o algoritmo de otimização global de clusters e nanopartículas basin-hopping Monte Carlo revisado. O potencial de interação atômica utilizado é o método do átomo imerso, que é bastante utilizado na descrição de sistemas metálicos. Os resultados obtidos sugerem que: (i) os sistemas puros apresentaram energia de coesão mais alta que seu análogo material na fase bulk, sugerindo que estes tendem a aglomerar-se formando estruturas bulk. Para os sistemas binários e ternários, foi identificado que todas as composições são energeticamente estáveis devido aos valores negativos obtidos pelo excesso de energia e, para o sistema ZrCu verificou-se a presença de efeitos de tamanho. (ii) Com relação à estrutura, as composições puras estudadas apresentaram simetria icosaédrica. Para o estudo da evolução do tamanho do sistema, Zr e Cu apresentaram estrutura com simetria icosaédrica até a composição de 561 átomos, além deste tamanho a simetria icosaédrica é quebrada. Para os sistemas binários e ternários foi obtido que os átomos tendem a distribuir-se dentro do nanocluster além de apresentarem quebra da simetria icosaédrica apresentando ausência de camadas atômicas ordenadas acompanhada de redução da coordenação efetiva. Os sistemas ZrCu e ZrAl demonstraram seguir a lei de Vegard, enquanto que os sistemas CuAl e ZrCuAl apresentaram desvio da lei de Vegard providos por efeitos eletrônicos, além de apresentarem a presença de efeitos de tamanho. / Clusters and nanocluster have attracted great attention due to their physical and chemical properties, very different from their analogous bulk. These properties can vary with composition and size cluster. An understanding of the properties evolution with respect these parameters is essential to improve several applications. However, this understanding is not complete. This study was piecemeal in two stage, being the first the investigation of energetic properties, by excess energy analisys, and structural properties, by chemical order parameter, radial distribution function, effective coordination number and average bond length, from ZrnCum-n, ZrnAlm-n, CunAlm-n and ZrnCunAlm-2n systems, where n = 55, 561 atoms and the increment n vary in one unit for 55-atoms system and twenty unit for 561-atoms system. The second stage is the investigation of how vary the energetic and structural properties from the size evolution ZrCu system. To do this study, was employed the global optimization algorith for cluster and nanoparticle Revised basin-hopping Monte Carlo, were this method use the classical calculation to determine the total energy of the system. The interatomic potential used was the embedded atom method, that was very usefull to describe metallic systems. Our results suggest: (i) the unary systems present cohesive energy higher than their analogous bulk, that indicate the trend of clusters to form bulk. To the binary and ternary systems, we had that all systems are favorable to form nanoalloys by negative value of excess energy. From ZrCu system, the stability decrease when increase the size of system. With respect the structure, the unary compounds present icosahedral symmetry. From the size-evolution study, the unary compounds present icosahedral symmetry until 561-atoms composition, after this size the icosahedral symmetry is broken. To binary and ternary systems, the atoms trend form mixture into the nanocluster, the icosahedral symmetry is broken with respect the unary compounds and presenting absence of ordered layers followed by effective coordination reduction. The ZrCu and ZrAl systems follow the Vegard law, while the CuAl and ZrCuAl systems present deviation from Vegard law, because electronic effects.

Page generated in 0.0267 seconds