• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 22
  • 3
  • Tagged with
  • 43
  • 31
  • 12
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

NANOMEDECINE EN ONCOLOGIE : Etude des Interactions Entre les Nanoparticules Activables par des Sources d'Energie Electromagnétique Externes et les Cellules Cancéreuses pour Elargir la Fenêtre Thérapeutique

Virginie, Simon 03 December 2009 (has links) (PDF)
La compréhension des interactions entre les nanomatériaux et les entités biologiques est fondamentale pour développer des nanoproduits en oncologie. NBTXR3 (nanoparticule inerte d'oxyde d'hafnium) et protoporphyrine IX (Pp IX) nanotransporteur (nanoparticule de silice encapsulant le Pp IX, le monomère du Photofrin®) sont des nanoproduits, issus des plateformes Nanobiotix, développés pour élargir la fenêtre thérapeutique des traitements du cancer en utilisant des sources d'activation externe de type " on " / " off ". La première partie de ce travail présente l'étude de l'interaction de NBTXR3 avec des cellules tumorales coliques humaines. NBTXR3 pénètre par endocytose et persiste dans le compartiment endolysosomial. Une augmentation significative de la réponse cellulaire à la radiothérapie est démontrée après activation de NBTXR3 par des radiations ionisantes. L'irradiation des cellules traitées par NBTXR3 entraîne des modifications spécifiques de leur morphologie par rapport aux contrôles; elles sont décrites ici. Une deuxième partie présente la synthèse d'un nouvel hybride pour la thérapie photodynamique, le Pp IX nanotransporteur, et étudie son interaction in vitro avec six lignées de cellules tumorales humaines et in vivo dans un modèle de souris nude xénogreffée avec trois types tumoraux. In vitro, le Pp IX nanotransporteur activé à 630 nm est plus efficace que le Pp IX libre. De plus, ce nouvel hybride favorise la biodistribution du Pp IX, avec une cinétique d'accumulation tumorale différente entre les modèles. La compréhension des interactions entre nanoparticules et cellules cancéreuses, apportée par ce travail, contribue à la création de nanothérapies innovantes.
42

Vectorisation d'une molécule proapoptotique TRAIL par des nanotubes de carbone (NTCs) : cible thérapeutique prometteuse du cancer / Vectorization of proapoptotic molecule TRAIL by carbon nanotubes (CNTs) : promising therapeutic target of cancer

Zakaria, Albatoul 04 June 2015 (has links)
TRAIL (TNF-related apoptosis inducing ligand) est une protéine anti-tumorale capable de se lier spécifiquement aux récepteurs agonistes de mort (TRAIL-Rl ou DR4 et TRAIL-R2 ou DR5) des cellules cancéreuses et d'induire leur apoptose sans être toxique pour les cellules saines. Grâce à leurs propriétés exceptionnelles, notamment leur biocompatibilité, les nanotubes de carbone et surtout les SWCNTSs sont utilisés dans un large éventail d'applications et sont considérés très prometteurs pour révolutionner la thérapie anticancéreuse en nanomédecine. Les SWCNTSs sont connus par leur diffusion rapide dans un milieu aqueux tel que le sang, ouvrant la voie de développement de nouveaux nanovecteurs de médicaments. L'objectif principal de nos travaux de thèse a consisté à fonctionnaliser TRAIL sur des SWCNTSs pour mimer sa fonction membranaire en induisant une forte agrégation des récepteurs et déclencher l'apoptose (mort cellulaire programmée). Dans un premier temps, la fonctionnalisation des SWCNTSs avec TRAIL a été réalisée: adsorption non covalente des molécules de PSE sur les nanotubes via 1t-1t stacking, puis greffage du TRAIL au complexe SWCNTS-PSE pour former le nanovecteur (nommé NPT). Ensuite, nous avons caractérisé notre NPT par différentes méthodes (RAMAN, XPS, IR, MET, STEM ... ) afin d'estimer le taux de greffage du TRAIL sur le NPT, qui était environ de 80%. Dans un deuxième temps, nous avons étudié les paramètres thermodynamiques tels que le pH et la température du NPT en comparaison avec TRAIL seul par une approche chromatographique d'affinité (CHLP). Les résultats obtenus montrent une meilleure affinité du nanovecteur par rapport à TRAIL seul avec le récepteur TRAIL-R2 immobilisé sur la colonne chromatographique. En outre, des calculs de docking ont montré également que le complexe NPT couplé aux homotrimères de TRAIL est le plus stable une fois docké au récepteur TRAIL-R2. Ainsi, nous avons montré que les interactions de type Van der Waals et des liaisons hydrogène régissent l'association NPT-DR5 pour un pH supérieur à 7,4 (comme pour TRAIL seul). Enfin, notre nanovecteur s'est avéré plus efficace que TRAIL seul dans des différents tests menés in vitro sur des plusieurs types de lignées tumorales. Le NPT a permis une augmentation du potentiel pro­apoptotique de TRAIL avec un gain de fonction apoptotique estimé entre 10-20 fois par rapport à celui obtenu avec TRAIL seul. Dans ce travail, nous fournissons ainsi une preuve de concept que les nanovecteurs basés sur la fonctionnalisation du TRAIL avec les SWCNTSs peuvent être utiles pour les futurs traitements anti-cancéreux en nanomédecine. / TRAIL (TNF-related apoptosis inducing ligand) is a protein involved in immune anti-tumor surveillance. This cytokine is able to bound specifically to agonist death receptors (TRAIL-Rl or DR4 and TRAIL-R2 or DR5) of cancer cells, inducing apoptosis without being taxie to healthy cells. Thanks to their exceptional properties such as biocompatibility, carbon nanotubes and especially single-walled carbon nanotubes (SWCNTSs) are used in a wide range of applications and are considered to be very promising for cancer therapy in nanomedicine. The SWCNTSs are known to rapidly diffuse in aqueous media such as blood, opening the way for the development of new drug nanovectors or nanocarriers. The main purpose of this work is to functionalize SWCNTSs with TRAIL to mimic the membrane function of TRAIL by inducing a strong aggregation of death receptors and then induce apoptosis. First of all, the choice of SWCNTS functionalization with TRAIL was considered the first key in this thesis: non-covalent adsorption of PSE molecules on the nanotubes via 1t-1t stacking and TRAIL was next attached to a SWCNTS-PSE to form our nanovector, called NPT. Then, the NPT was characterized by various methods (Raman, XPS, IR, TEM, STEM, ... ) in order to estimate the grafted degree of TRAIL on the NPT surface (about 80%). Secondly, we investigated the ef:fects of the thermodynamic parameters such as pH and temperature on NPT versus TRAIL by a chromatographie approach (HPLC). The results showed a better affinity for NPT compared to TRAIL alone with the TRAIL-R2 receptor immobilized on the chromatographie colurnn. In addition, docking calculations have also shown that the NPT complex coupled to TRAIL homotrimers is the most stable when docked to DR5. Thus, we have demonstrated that Van der Waals interactions and hydrogen bonds govem the NPT-DR5 association for pH > 7.4 (as for TRAIL). Finally, our TRAIL-based SWCNTSs nanovectors (NPT) proved to be more efficient than TRAIL alone towards death receptors in triggering cancer cell killing in vitro. These NPTs increased the pro-apoptotic potential of TRAIL by nearly 10 to 20-fold in different Human tumor cell lines tested including colorectal, non-small cell lung cancer, or hepatocarcinomas. We provide in this work a proof of concept that nanovectors based on SWCNTS functionalization with TRAIL may be useful for future cancer treatments in nanomedicine.
43

Compréhension des mécanismes d'interaction entre des nanotubes de carbone et une membrane biologique : effets toxiques et vecteurs de médicaments potentiels

Kraszewski, Sebastian 17 September 2010 (has links) (PDF)
Ce travail de thèse concerne l'étude théorique des mécanismes d'interaction de nanostructures à base de carbone avec les membranes cellulaires, constituant l'essentiel des cellules vivantes. Ce sujet très complexe compte tenu de la pluridisciplinarité de la thématique a été essentiellement réalisé à l'aide de simulations numériques. Nous avons volontairement partagé ce travail en deux parties distinctes. Nous avons d'abord étudié le fonctionnement des canaux ioniques à l'aide de la dynamique moléculaire et des études ab-initio. Ces canaux sont d'une part des protéines membranaires essentielles pour la fonction cellulaire, et d'autre part, elles constituent aussi des cibles thérapeutiques fréquentes dans la recherche des nouveaux médicaments. Dans une seconde partie, nous avons étudié le comportement d'espèces carbonées nus et fonctionnalisés tels que les fullerènes (C60) et les nanotubes (CNT) en présence de la membrane cellulaire en analysant finement le mécanisme d'ingestion (ang. uptake) de ces vecteurs de médicaments potentiels par les membranes biologiques. Ces études en dynamique moléculaire sur des temps très longs (sub-1 μs) et sur des systèmes très vastes étaient aussi le challenge du point de vue informatique. Pour palier la problématique dans le temps limitée d'une thèse le développement des calculs parallèles de haute performance CPU/GPU a du être mis en place. Les résultats obtenus tentent de mettre en évidence le rôle toxique que peuvent présentées certaines nanostructures vis-à-vis des protéines membranaires précédemment étudiées. Ce travail de thèse ouvre naturellement la voie à l'étude des nanovecteurs biocompatibles pour la délivrance des médicaments.

Page generated in 0.0611 seconds