• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial toxicity testing of inorganic nanoparticles

Widdowson, Alexandra January 2015 (has links)
NPs are toxic to a wide range of organisms across trophic levels; gram-positive and gram-negative bacteria (Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and Escherichia coli), algae (Pseudokirchneriella subcapitata), crustaceans (Daphnia magna and Thamnocephalus platyurus), fish (rainbow trout, zebrafish, trout) and plants (Lactuca sativa L. and Raphanus sativus L). Due to their lack of target specificity, NPs may pose an environmental risk. The antibacterial properties of Ag and Cu nanoparticles (NP) are enhanced by their large reactive surface area, compared to bulk counterparts. Toxicity of NPs is attributed to their solubility and subsequent release of ions. However, the cytotoxic effects of NPs cannot always be attributed to the free ion fraction. The underpinning objective of this study was to link the response of microbial biosensors to detailed chemical analysis of NP dissolution products. NPs were suspended in Millipore water and in the presence of the steric stabiliser Na citrate and the resulting NP solubility characterised. Using chemical analysis this study quantified the flux of total dissolved metal (total [M]) and free metal ions [M+] from Ag and Cu NPs (Chapter 3). Two bioluminescent biosensors were used to assess the bioavailable metal fraction ([M]bio) of NP dissolution (Chapters 5 and 6). E. coli HB101 pUCD607 (bacterial) and M. citricolor (fungal) were chosen to represent NP toxicity across trophic levels using the same response mechanism. Additionally, the metal-induced bioreporter, P. fluorescens DF57-Cu15, was used to quantify the Cu bioavailability of Cu NP dissolution. By combining chemical and biological analysis this study inferred NP toxicity is not mass dependent, toxicity is dissolution dependent. Dissolution of Ag and Cu NPs in Millipore water was mostly in the [M+] form. This remained the case for Ag NPs in the presence of Na citrate. However, dissolution of Cu NPs in Na citrate was mostly as total [Cu]. This was due to Cu ions complexing readily with citrate. Toxicity of Ag NP dissolution in Millipore water was concentration dependent. Total [Ag] correlated with E. coli HB101 toxicity response. The addition of Na citrate reduced Ag NP dissolution and therefore reduced toxicity to E. coli HB101. M. citricolor was less sensitive than E. coli HB101 to the dissolution products of Ag NPs in Millipore water. However, the sensor was more sensitive to the dissolution of Ag NPs in Na citrate than E. coli HB101. Cu NPs were chemically stable in Millipore water. The bioreporter P. fluorescens DF57-Cu15 was not induced by Millipore suspensions and E. coli HB101 was not inhibited. However, M. citricolor responded to [Cu]bio of Millipore suspensions with a maximum 54% inhibition of bioluminescence. P. fluorescens DF57-Cu15 was induced by the dissolution products of Cu NPs with the addition of Na citrate, only at high NP concentrations (> 500 mg/L). [Cu]bio of the Na citrate suspensions was toxic to E. coli HB101. However, toxicity was greater for M. citricolor with a maximum biosensor inhibition of 83%. There was no correlation between total [Cu], [Cu2+] or [Cu]bio with the response of either biosensors nor the bioreporter. Interpretation of Ag and Cu NP toxicity was made possible by the combining of chemical and biological toxicity assessment. Dissolution of Ag NPs suspended in Millipore water could be attributed as the main factor in toxicity to E. coli HB101 because of the knowledge gained by chemical analysis. It also allowed the conclusion that NP dissolution was a key factor to toxicity in all cases but biological assessment attributed NP assimilation as a contributing factor. Biological assessment is vital as no chemical analysis can quantify [M]bio, especially when [M]bio was perceived differently by biosensors of different trophic levels and modes of action. Combining chemical and biological assessment in this study was essential for interpreting NP toxicity.
2

The ecotoxicology of engineered nanoparticles to freshwater fish

Shaw, Benjamin John January 2011 (has links)
The use of nanoscale materials is growing exponentially, but there are also concerns about the environmental hazard to aquatic biota. Metal-containing engineered nanoparticles (NPs) are an important group of these new materials, and whilst there are undoubtedly a plethora of beneficial uses for these NPs, it is essential that an appropriate risk assessment is carried out in order to protect the environment and human health, with the consumption of contaminated fish a distinct possibility. The current study aimed to assess the bioavailability, uptake and toxicological effects of two metal-NPs (TiO2 NPs and Cu-NPs) to fish from both dietary and waterborne exposure routes and where appropriate compare them to their bulk counterpart. Whole body system effects were assessed along with the influences of the life stage of exposed fish and abiotic factors on toxicity. A technique to improve the quantification of Ti from TiO2 NPs in fish tissue was also developed. Effects from exposure to dietary TiO2 NPs manifested similarly to traditional dietary metal exposure, with no reduction in growth, but some sublethal affects. Exposure to waterborne Cu-NPs showed that rainbow trout were more acutely sensitive to CuSO4 than the NPs, but that despite limited uptake several body systems were affected (most notably ionoregulation). Larvae were more sensitive to CuSO4 than Cu-NPs, but no differences were seen with embryos, whilst larvae were more sensitive than embryos. Abiotic factors did have an effect on acute Cu-NP toxicity, though not always in a predictable manner, with some effects more pronounced than with CuSO4. Overall, it appears that metal-NPs are not as acutely toxic as their bulk counterparts, but sublethal effects, were routinely observed. As TiO2 NPs appear more toxic than its bulk counterpart, current legislation governing safe environmental limits may have to be adjusted, though the situation with Cu-NPs isn’t as clear and further investigation is required. However, the risk of human exposure via the consumption of NP contaminated fish fillets is extremely low.
3

Developing rapid in vivo assays to investigate structure response relationships

Truong, Lisa 24 August 2012 (has links)
Incorporation of nanoparticles (NPs) into consumer products is on the rise and human exposure to NPs is unavoidable. Currently, there is insufficient data to assess the safety of nanoparticles. I conducted a series of five studies using the zebrafish model to determine which NP components (i.e., core material or surface functionalization) contribute to biological responses and how ionic strength influences these results. The first study employed a systematic, rapid embryonic zebrafish assay to identify specific responses to precisely engineered lead sulfide (PbS-NPs) and gold nanoparticles (AuNPs) functionalized with different surface ligands. Lead sulfide nanoparticles functionalized with either 3-mercaptopropanesulfane (MT) or sodium 2,3-dimercaptopropanesulfonate (DT) ligands with nearly identical core sizes caused differential responses at the same concentration. I determined that the different responses were because MT-functionalized NPs released more soluble lead ions than DT-functionalized NPs due to different decomposition and oxidation rates. The second study investigated the different biological responses of three NPs identified during toxicity screening of a gold nanoparticle library. AuNPs functionalized with 2-mercaptoethanesulfonic acid (MES), N,N,N-trimethylammoniumethanethiol (TMAT), or 2-(2-(2-mercaptoethoxy)ethoxy)ethanol (MEEE), induced differential biological responses in embryonic zebrafish at the same concentration. Exposure to MES-AuNPs induced sublethal effects, while TMAT-AuNPs were embryo-lethal and MEEE-AuNPs were benign. Gold tissue concentration was confirmed to be similar in exposed embryos using inductively coupled-mass spectrometry. Microarrays were used to gain insight to the causes of the different responses. This approach identified that MES- and TMAT-AuNPs perturbed inflammatory and immune responses. These differential biological responses may be due to misregulated transport mechanisms causing numerous downstream defects unique to each surface functional group‟s property. In the next study, I tested the long-term consequences of developmental exposure to TMAT-, MES, and MEEE-AuNPs, and showed that MES- and TMAT-AuNPs affected larval behavior that persisted into adulthood. During the course of these investigations, I found that high ion concentration in exposure solutions results in NP agglomeration, presenting a problem for NP testing in the zebrafish model. For the fourth study, I focused on solving this by determining that zebrafish can be raised in nearly ion-free media without adverse consequences. When 3-MPA-AuNPs were dispersed in this new low ionic media, I observed adverse responses in the embryonic zebrafish toxicity assay, but not when the NPs were suspended in high ionic media. Thus, I demonstrated that the media greatly influences both agglomeration rates and biological responses, but most importantly, that the zebrafish is insensitive to external ions. The fifth study focused on the adverse response observed when embryonic zebrafish were exposed to 3-MPA-AuNPs. Exposed larvae failed to respond to a touch in the caudal fin at 120 hours post fertilization (hpf). Addition of a neuromuscular stimulus, nicotine, revealed the exposed embryos were not paralyzed, but experienced a reduction in axonal projections. A global genomic analysis (RNA-seq) using embryos exposed to 3-MPA-AuNP and MEEE-AuNPs (non-toxic control) from 6 to 120 hpf suggested that neurophysiological and signal transduction processes were perturbed. Functional analysis of the data led to the hypothesis that the most elevated gene, early growth response 1 (EGR-1), impacts axonogenesis in the caudal fin, interfering with glutaminergic synapses and preventing the connection of sensory neurons and touch perception. Although MEEE-AuNPs did not cause morphological defects, the RNA-seq analysis identified that these NPs perturbed immune and inflammatory system processes. Collectively, these results suggest that surface functional groups drive the differential responses to nanomaterials. The five studies summarized here confirm that a systems toxicological approach using the zebrafish model enables the rapid identification of structure-activity relationships, which will facilitate the design of safer nano-containing products. / Graduation date: 2013
4

Determinants of silver nanoparticle toxicity

Promtong, Pawika January 2015 (has links)
Silver nanoparticles (AgNPs) containing consumer products have increasingly emerged in the market because of their potential antibacterial property, which might result in increased human exposure and environmental contamination. AgNPs are toxic to mammalian and other cells but the determinants of this toxicity remain to be fully characterised and the potential impact of DNA repair systems has been poorly explored. This study, therefore, examined to what extent the size and shape of synthesised AgNPs determined AgNP toxicity in DNA repair proficient and deficient (8-oxoguanine DNAglycosylase; WT and OGG1-/-, respectively) mouse embryonic fibroblasts (MEFs) as well as a well-known human cell line used in the toxicity testing, HepG2 cells. Citrate-stabilised spherical- and triangular-shaped AgNPs (S-AgNPs andT-AgNPs, respectively) were synthesised chemically from AgNO3 using combinations of NaBH4 and sodium citrate as a reducing and stabilising agent, respectively, and purified by dialysis. Three different sized S-AgNPs were prepared with diameters of 7.6 ± 1.2, 14.3 ± 4.2, and 52.5 ± 17.9 nm as measured using transmission electron microscope (TEM), and their zeta potentials were -36.1±2.7, -39.5±2.7 and -36.7±4.1 mV, respectively. T-AgNPs had an edge length and thickness of 71.4 ± 11.1 nm and 5.7 ± 0.8 nm, respectively. The size and zeta potential of the purified AgNPs were constant in distilled water for at least 6 months. The uptake of both S- and T-AgNPs by cells resulted in a time and dose-dependent increase in the number of cellular AgNPs and the amount of Ag+ released intracellularly. These increases were associated with a decrease in cell viability (as measured using the MTT assay) and cell survival (the clonogenic assay), and an induction in ROS generation (the DCF assay) and DNA damage(the alkaline Comet assay) for all three cell lines. AgNPs were observed in cells using TEM, suggesting the uptake of AgNPs via an endocytosis pathway. Results suggested that an increase in cellular AgNP level and intracellular released Ag+ content were associated with a time and dose-dependent toxicity. Interestingly, cellular AgNP level and intracellular released Ag+ content might play an important role in size-dependent AgNP toxicity, in which exposure to the smaller S-AgNP sizes (7nm and 14nm) resulted in higher levels of both cellular AgNPs and Ag+ released intracellularly, and then to increased toxicity when compared with the larger S-AgNP size (50nm). Moreover, different shaped AgNPs might induce toxicity by different mechanisms: ROS-mediated toxicity might be induced by both 70nm T-AgNPs and 50nm S-AgNPs and 70nm T-AgNPs might also induce cell membrane damage. AgNP-induced toxicity was different in different cell lines with HepG2 cells being more sensitive to AgNPs particularly using the clonogenic assay, and this toxicity was associated with higher DNA damage observed in HepG2 cells after 24 h. OGG1-/- MEFs were more sensitive to intracellular released Ag+, leading to higher ROS formation and DNA damage in OGG1-/- MEFs than that observed in WT MEFs. In summary, this study strongly suggests that AgNPs induce toxicity via a Trojan-horse type mechanism, and not only Ag+ released intracellularly but also cellular AgNPs take part in this toxicity, and will eventually result in the biological responses of the cells.
5

Size and surface area dependent toxicity of silver nanoparticles in zebrafish embryos (Danio rerio)

Tuttle, George R. (George Reid) 30 October 2012 (has links)
Many studies addressing the toxicity of silver nanomaterials have found that smaller sized silver nanoparticles are usually more toxic to organisms and in cell culture than particles of larger sizes yet it is not entirely clear why. We investigated the size dependent toxicity of silver nanoparticles by measuring the response of embryonic zebrafish (Danio rerio) following exposure to a library of thirteen distinct silver nanoparticle size distributions with mean diameters between 8.9 nm and 112.6 nm. Data analysis using dose���response modeling revealed that silver nanoparticles (AgNP) induced embryo toxicity that is dependent on the total surface area and not on the mass or particle number in solution. Included in this study is a comparison between embryo toxicity induced by silver nitrate (AgNO���) and AgNPs for cardiovascular endpoints, as well as an investigation into the influence of the chorion on AgNP toxicity. This study demonstrates the importance of using alternative dose metrics in nanotoxicology, and highlights the value of using the embryonic zebrafish to explore nanomaterial structure activity relationships. / Graduation date: 2013
6

An investigation into the mechanism of toxicity of zinc oxide nanoparticles

Sharma, Vyom January 2011 (has links)
The wide scale use of ZnO nanoparticles (NPs) in the world consumer market has resulted in likelihood of exposure to human beings. The present study was aimed to assess the in vitro and in vivo interactions of ZnO NPs in the mammalian system and to elucidate the possible mechanism of their toxicity. Our in vitro results using human epidermal cells (A431), primary human epidermal keratinocytes and human liver cells (HepG2) demonstrated that cells exposed to ZnO NPs exhibit a decrease in cell viability which was independent of NP dissolution. ZnO NPs also induced oxidative DNA damage as evidenced by an increase in the Fpg sensitive sites. The reactive oxygen species triggered a decrease in mitochondrial membrane potential and an increase in the ratio of Bax/Bcl2 leading to apoptosis through the intrinsic pathway. In addition, ZnO NPs induced phosphorylation of JNK, P38 and P53ser15. The results from our in vivo studies using a mouse model showed that ZnO NPs induce lipid peroxidation, oxidative DNA damage and apoptosis in liver which further confirmed our in vitro findings. The data from the present study provide valuable insights into the cellular interactions of ZnO NPs and the underlying molecular mechanism of their toxicity. The results also stress the need for a comprehensive environmental health and safety assessment of engineered nanomaterials to ensure safer nanotechnology based products.
7

Detekce luminiscenčních nanočástic v rostlinách laserovou spektoroskopií / Detection of luminescent nanoparticles in plants by laser spectroscopy

Střítežská, Sára January 2021 (has links)
This diploma thesis deals with evaluation of toxicity and bioaccumulation of photon-upconversion nanoparticles (UCNPs) in model plant maize (Zea mays). Lanthanide-doped UCNPs with different composition and size were tested in three different concentrations in this work. The exposure took place for 168 hours. Toxicity was assessed based on four macroscopic toxicological endpoints (mortality, the length of belowground part of the plants, the length of aboveground part of the plants and whole plants length). Spatial distribution of elements yttrium, ytterbium, erbium and gadolinium in model plants was determined using laser induced breakdown spectroscopy with spatial resolution of 100 m and 26 m. Distribution of UCNPs in plants was further studied with photon-upconversion microscanning with spatial resolution of 40 m. Stability of UCNPs during and after the plant exposure was also discussed in this thesis.
8

Evaluation of Silver Nanoparticle Acute and Chronic Effects on Freshwater Amphipod (Hyalella Azteca)

Kusi, Joseph, Maier, Kurt J. 01 January 2022 (has links)
Silver nanoparticles (AgNPs) are known to cause ecotoxic effects, but there are no existing derived ambient water quality criteria (AWQC) for these nanomaterials to protect freshwater aquatic life due to insufficient toxicological data. We exposed Hyalella azteca to silver nitrate, citrate-coated AgNPs (citrate-AgNPs), and polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs) in a 10-day and 28-day water-only static renewal system with clean sand as a substrate for the amphipods and compared their point estimates with the United States Environmental Protection Agency (USEPA) AWQC for silver. We observed that all treatments decreased the survival, growth, and biomass of H. azteca, and the order of toxicity was AgNO > citrate-AgNPs > PVP-AgNPs. The LC50s of AgNO, citrate-AgNPs, and PVP-AgNPs were 3.0, 9.6, and 296.0 µg total Ag L, respectively, for the acute exposure and 2.4, 3.2, and 61.4 µg total Ag L, respectively, for the chronic exposure. Acute and chronic EC20s of citrate-AgNPs ranged from 0.5 to 3.5 µg total Ag L while that of PVP-AgNPs ranged from 31.2 to 175 µg total Ag L for growth and biomass. Both Ag released from AgNPs and the nanoparticles contributed to the observed toxicity. The dissolution and toxicity of AgNPs were influenced by surface coating agents, particle size, and surface charge. Most point estimates for AgNPs were above AWQC for silver (4.1 µg L) and the lowest concentration (0.12 µg/L) at which Ag is expected to cause chronic adverse effects to freshwater aquatic life. Our study demonstrates that the current AWQC for silver, in general, is protective of freshwater aquatic life against AgNPs tested in the present study.
9

Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells

Osman, I. F., Baumgartner, A., Cemeli, E., Fletcher, J. N., Anderson, D. January 2010 (has links)
AIMS: The rapidly growing industrial and medical use of nanomaterials, especially zinc oxide and titanium dioxide, has led to growing concerns about their toxicity. Accordingly, the intrinsic genotoxic and cytotoxic potential of these nanoparticles have been evaluated. MATERIALS & METHODS: Using a HEp-2 cell line, cytotoxicity was tested along with mitochondrial activity and neutral red uptake assays. The genotoxic potential was determined using the Comet and the cytokinesis-blocked micronucleus assays. In addition, tyrosine phosphorylation events were investigated. RESULTS & CONCLUSION: We found concentration- and time-dependent cytotoxicity and an increase in DNA and cytogenetic damage with increasing nanoparticle concentrations. Mainly for zinc oxide, genotoxicity was clearly associated with an increase in tyrosine phosphorylation. Our results suggest that both types of nanoparticles can be genotoxic over a range of concentrations without being cytotoxic.

Page generated in 0.1474 seconds