• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 38
  • 11
  • 10
  • 9
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 254
  • 41
  • 38
  • 35
  • 30
  • 30
  • 29
  • 29
  • 29
  • 26
  • 25
  • 23
  • 22
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Nanoscale Structure of Fully Dense Human Cortical Bone

McNally, Elizabeth 08 1900 (has links)
Supporting videos attached / The nanoscale structure of fully dense human cortical bone is explored using advanced transmission electron microscopy (TEM) techniques. Studies of fully dense cortical bone are rare because of the sample preparation challenges. In this work, cryogenic ion milling is compared favourably with traditional ultramicrotoming methods because of the clearer imaging results and better preservation of biological structures in the ion milled samples. Ion milled samples were prepared parallel, perpendicular and at a 45 degree angle to the long axis of a human femur. The samples are cooled with liquid nitrogen while being milled to prevent heating damage to the bone structure. Bright-field and dark-field imaging show that mineral mainly occurs as 65 nm wide, 5 nm thick mineral structures, external to the collagen fibrils, and with the long axis of the mineral running parallel to the fibrils. In samples cut parallel to the long axis of the bone, the mineral structures have their c-axes aligned with the collagen fibril long axis. In these sections the mineral structures extend up to 200 nm and are grouped into stripe-like bunches, 53 nm apart. Samples cut perpendicular to the long axis of the bone show open areas roughly 45 nm in diameter. These open areas are assumed to be the location of collagen fibrils within the structure and are tangentially surrounded by 65 nm wide, 5 nm thick mineral structures. On average, there are 22 nm of mineral structures between adjoining collagen fibrils. Samples cut at 45 degrees to the long axis of the bone confirm that the open structure seen in the perpendicular section is not an artefact of sample preparation. By tilting the sample, the 45 degree sample shows the structure of both the parallel and perpendicular sections. The parallel structure strongly resembles images of embryonic bone and other mineralized tissues seen in the literature, so the perpendicular open structure is not caused by sample preparation. An examination of ultramicrotoming’s effect on mineral structure size compared with that of ion milling shows that the mineral structures in ion milled samples are twice as long as in ultramicrotomed samples, indicating that bone mineral may be damaged by the forces applied to the complex composite structure existing in fully dense cortical bone. Using energy dispersive X-ray spectroscopy (EDXS) results and a simplified model of the locations of mineral within the collagen/mineral framework, a calculation of the percentage of external mineral was performed. The result showed that 80+_ 6 % of the mineral in fully dense cortical bone must be external to the collagen fibrils to obtain the EDXS results. Finally, Z-contrast tomography, based on the use of high angle annular darkfield (HAADF) imaging, was used to prepared tomographic reconstructions of the external mineral in fully dense cortical bone. Unlike bright-field tomography, the Z-contrast technique allows examination of crystalline materials as the contrast in HAADF images is mass-thickness dependent instead of diffraction based. These reconstructions again showed the mineral tangentially surrounding 50 nm diameter cylindrical holes, assumed to be the location of collagen fibrils in all directions. This work shows the importance of mineral that is external to the collagen fibrils to the nanoscale structure of fully dense cortical bone. / Thesis / Doctor of Philosophy (PhD)
62

Control of Nanoscale Thermal Transport for Thermoelectric Energy Conversion and Thermal Rectification

Pal, Souvik 18 December 2013 (has links)
Materials at the nanoscale show properties uniquely different from the bulk scale which when controlled can be utilized for variety of thermal management applications. Different applications require reduction, increase or directional control of thermal conductivity. This thesis focuses on investigating thermal transport in two such application areas, viz., 1) thermoelectric energy conversion and 2) thermal rectification. Using molecular dynamics simulations, several methods for reducing of thermal conductivity in polyaniline and polyacetylene are investigated. The reduction in thermal conductivity leads to improvement in thermoelectric figure of merit. Thermal diodes allow heat transfer in one direction and prevents in the opposite direction. These materials have potential application in phononics, i.e., for performing logic calculations with phonons. Rectification obtained with existing material systems is either too small or too difficult to implement. In this thesis, a more useful scheme is presented that provides higher rectification using a single wall carbon nanotube (SWCNT) that is covalently functionalized near one end with polyacetylene (PA). Although several thermal diodes are discussed in literature, more complex phononic devices like thermal logic gates and thermal transistors have been sparingly investigated. This thesis presents a first design of a thermal AND gate using asymmetric graphene nanoribbon (GNR) and characterizes its performance. / Ph. D.
63

Modeling and optimization to connect layout with silicon for nanoscale IC

Shi, Xiaokang 04 June 2010 (has links)
With continuous and aggressive scaling in semiconductor technology, there is an increasing gap between design expectation and manufactured silicon data. Research on DFM (Design for manufacturability), MFD (Manufacturing for Design) and statistical analysis have been investigated in recent years to bridge design and manufacturing. Fundamentally, layout is the final output from the design side and the input to the manufacturing side. It is also the last chance to dramatically modify the design efficiently and economically. In this dissertation, I present the modeling and optimization work on bridging the gap between design expectation and reality, improving performance and enhancing manufacturing yield. I investigate several stages of semiconductor design development including manufacturing process, device, interconnect, and circuit level. In the manufacturing process stage, a novel inverse lithography technology (ILT) is proposed for sub-wavelength lithography resolution enhancement. New intuitive transformations enable the method to gradually converge to the optimal solution. A highly efficient method for gradient calculation is derived based on partially coherent optical models. Dose variation is considered within the ILO process with the min-max optimization method and the computation overhead on dose process variation could be omitted. The methods are implemented in state-of-the-art industrial 32nm lithography environment. After the work in the lithography process stage provides both mask optimization and post-layout silicon image simulation, my work on the first non-rectangular device modeling card extends the post-layout lithography to post-litho electrical calibration. Based on the lithography simulation results, the non-rectangular gate shapes are extracted and their effect is investigated by the proposed non-rectangular device modeling card and post-litho circuit simulation flow. This work is not only the first non-rectangular device modeling card but also compatible with industry standard device models and the parameter extraction flow. Interconnect plays a more critical role in the nanometer scale IC design especially because of its impact on delay. The scattering effect that occurs in nanoscale wires is modeled and different methods of wire sizing/shaping are discussed. Based on closed-form resistivity model for nanometer scale Cu interconnect, new interconnect delay model and wire sizing/shaping strategies are developed. Based on the advanced modeling of process, device and interconnect, circuit level investigation is focused on statistical timing analysis with a new latch delay model. For the first time, both combinational logic and clock distribution circuits are integrated together through statistical timing of latch outputs. This dissertation studies the new phenomena of nanometer scale IC design and manufacture. Starting from the designed layout, through modeling, optimization and simulation, the work moves ahead to the mask pattern and silicon image, calibrates electrical properties of devices as well as circuits. Through above process, we can better connect layout with silicon data to reach design and manufacturing closure. / text
64

Nanoscale surface modification studied by reflection anisotropy spectroscopy

Lane, Paul David January 2009 (has links)
The development and control of nanoscale properties is a major goal in science and technology; for the development of such technologies it is important that there are experimental techniques which allow the monitoring of development processes in real time and in a range of environments. With this in mind much effort has been invested in the development of surface sensitive optical probes. One such technique, reflection anisotropy spectroscopy (RAS), has been applied successfully to a number of different problems since its development in the mid 1980’s. RAS as a surface specific technique is very sensitive to small changes to surface morphology, electronic structure and molecular orientation. This makes RAS a useful technique to study nanoscale changes occurring at surfaces and it is applied here to three such systems, in an attempt to develop a better understanding of both the systems and the technique. Surface defects arising from thermal processing and etching of the sample are considered and are found to have a significant effect on both the electronic structure and the morphology of the surface. The time and temperature dependences of the RAS signatures allow the monitoring of surface dynamic processes. The deposition of a monolayer of adsorbate molecules onto the surface allows a new interface to be created. Monitoring the evolution of this surface during deposition provides information about both the substrate surface and the adsorba te covered surface; a theoretical framework has been outlined to show how the sources of anisotropy from multiple thin film layers combine to give a RAS signal. Azimuth dependent RAS (ADRAS) is known to provide information on surface symmetry and can be used to determine molecular orientation. There are also a number of other angles which affect the RA spectrum from a sample. A tilted molecule causes a breakdown in surface symmetry; this work shows how such an effect can be observed.
65

Optical and Terahertz Energy Concentration on the Nanoscale in Plasmonics

Rusina, Anastasia 01 December 2009 (has links)
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength R λ 300 μm 0 0 ≈ ≈ to the unprecedented final size of R = 100 − 250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These properties of spoof plasmons are of great interest for THz technology.
66

Optical and Terahertz Energy Concentration on the Nanoscale in Plasmonics

Rusina, Anastasia 20 October 2009 (has links)
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength ~300 μm to the unprecedented final size of 100-250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These properties of spoof plasmons are of great interest for THz technology.
67

Magnetic State Detection in Magnetic Molecules Using Electrical Currents

Saygun, Turab January 2015 (has links)
A system with two magnetic molecules embedded in a junction between non-magnetic leads was studied. In this system electrons tunnel from the localized energy level in region one to the localized energy level in region two generating a flow of electric charge through the quantum dot system. The current density and thus the conductance changes depending on the molecular spin moment. In this work we studied molecules with either spin "up" or spin "down" and with symmetric coupling strengths. The results indicate that the coupling strength between energy level and molecule together with the tunneling rate through the insulating layer play a major role when switching from parallel to anti-parallel molecular spin, for a specific combination of the coupling strength and tunneling rate we could observe a decrease in the current by 99.7% in the non-gated system and 99.4% in the gated system.
68

A Dynamical Approach to Plastic Deformation of Nano-Scale Materials : Nano and Micro-Indentation

Srikanth, K 07 1900 (has links) (PDF)
Recent studies demonstrate that mechanical deformation of small volume systems can be significantly different from those of the bulk. One such interesting length scale dependent property is the increase in the yield stress with decrease in diameter of micrometer rods, particularly when the diameter is below a micrometer. Intermittent flow may also result when the diameter of the rods is decreased below a certain value. The second such property is the intermittent plastic deformation during nano-indentation experiments. Here again, the instability manifests due to smallness of the sample size, in the form of force fluctuations or displacement bursts. The third such length scale dependent property manifests as ’smaller is stronger’ property in indentation experiments on thin films, commonly called as the indentation size effect (ISE). More specifically, the ISE refers to the increase in the hardness with decreasing indentation depth, particularly below a fraction of a micrometer depth of indentation. The purpose of this thesis is to extend nonlinear dynamical approach to plastic deformation originally introduced by Anantha krishna and coworkers in early 1980’s to nano and micro-indentation process. More specifically, we address three distinct problems : (a) intermittent force/load fluctuations during displacement controlled mode of nano-indentation, (b) displacement bursts during load controlled mode of nano-indentation and (c) devising an alternate framework for the indentation size effect. In this thesis, we demonstrate that our approach predicts not just all the generic features of nano-and micro-indentation and the ISE, the predicted numbers also match with experiments. Nano-indentation experiments are usually carried-out either in a displacement controlled (DC) mode or load controlled (LC) mode. The indenter tip radius typically ranges from few tens of nanometer to few hundreds of nanometers-meters. Therefore, the indented volume is so small that the probability of finding a dislocation is close to zero. This implies that dislocations must be nucleated for further plastic deformation to proceed. This is responsible for triggering intermittent flow as indentation proceeds. While several load drops are seen beyond the elastic limit in the DC controlled experiments, several displacement jumps are seen in the LC experiments. In both cases, the stress corresponding to load maximum on the elastic branch is close to the theoretical yield stress of an ideal crystal, a feature attributed to the absence of dislocations in the indented volume. Hardness is defined as the ratio of the load to the imprint area after unloading and is conventionally measured by unloading the indenter from desired loads to measure the residual plastic imprint area. Then, the hardness so calculated is found to increase with decreasing indentation depth. However, such size dependent effects cannot be explained on the basis of conventional continuum plasticity theories since all mechanical properties are independent of length scales. Early theories suggest that strong strain gradients exist under the indenter that require geometrically necessary dislocations (GNDs) to relax the strain gradients. In an effort to explain the the size effect, these theories introduce a length scale corresponding to the strain gradients. One other feature predicted by subsequent models of the ISE is the linear relation between the square of the hardness and the inverse of the indentation depth. Early investigations on the ISE did recognize that GNDs were required to accommodate strain gradients and that the hardness H is determined by the sum of the statistically stored dislocation (SSD) and GND densities. Following these steps, Nix and Gao derived an expression for the hardness as a function of the indentation depth z. The relevant variables are the SSD and GND densities. An expression for the GND density was obtained by assuming that the GNDs are contained within a hemispherical volume of mean contact radius. The authors derive an expression for the hardness H as a function of indentation depth z given by [ HH 0 ]2 = 1+ zz ∗ . The intercept H0 represents the hardness arising only from SSDs and corresponds to the hardness in the limit of large sample size. The slope z ∗ can be identified as the length scale below which the ISE becomes significant. The authors showed that this linear relation was in excellent agreement with the published results of McElhaney et al for cold rolled polycrystalline copper and single crystals of copper, and single crystals of silver by Ma and Clarke. Subsequent investigations showed that the linear relationship between H2 verses 1/z breaks down at small indentation depths. Much insight into nano-indentation process has come from three distinct types of studies. First, early studies using bubble raft indentation and later studies using colloidal crystals (soft matter equivalent of the crystalline phase) allowed visualization of dislocation nucleation mechanism. Second, more recently, in-situ transmission electron microscope studies of nano-indentation experiments have been useful in understanding the dislocation nucleation mechanism in real materials. Third, considerable theoretical understanding has come largely from various types of simulation studies such as molecular dynamics (MD) simulations, dis¬location dynamics simulations and multiscale modeling simulations (using MD together with dislocation dynamics simulations). A major advantage of simulation methods is their ability to include a range of dislocation mechanisms participating in the evolution of dislocation microstructure starting from the nucleation of a dislocation, its multiplication, formation of locks, junctions etc. However, this advantage is offset by the serious limitations set by short time scales inherent to the above mentioned simulations and the limited size of simulated volumes that can be implemented. Thus, simulation approaches cannot impose experimental parameters such as the indentation rates or radius of the indenter and thickness of the sample, for example in MD simulations. Indeed, the imposed deformation rates are often several orders of magnitude higher than the experimental rates. Consequently, the predicted values of force, indentation depth etc., differ considerably from those reported by experiments. For these reasons, the relevance of these simulations to real materials has been questioned. While several simulations, particularly MD simulation predict several force drops, there are no simulations that predict displacement jumps seen in LC mode experiments. The inability of simulation methods to adopt experimental parameters and the mismatch of the predicted numbers with experiments is main motivation for devising an alternate framework to simulations that can adopt experimental parameters and predict numbers that are comparable to experiments. The basic premise of our approach is that describing time evolution of the relevant variables should be adequate to capture most generic features of nano and micro-indentation phenomenon. In the particular case under study, this point of view is based on the following observation. While one knows that dislocations are the basic defects responsible for plastic deformation occurring inside the sample, the load-indentation depth curve does not include any information about the spatial location of dislocation activity inside the sample. In fact, the measured load and displacement are sample averaged response of the dislocation activity in the sample. This suggests that it should be adequate to use sample averaged dislocation densities to obtain load-indentation depth curve. Keeping this in mind, we devise a method for calculating the contribution from plastic deformation arising from dislocation activity in the entire sample. This is done by setting up rate equations for the relevant sample averaged dislocation densities. The first problem we consider is the force/load fluctuations in displacement controlled nano-indentation. We devise a novel approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and forest dislocation densities. Since the force serrations result from plastic deformation occurring inside the sample, we devise a method for calculating this contribution by setting-up a system of coupled nonlinear time evolution equations for the mobile and forest dislocation densities. The approach follows closely the steps used in the Anantha krishna (AK) model for the Portevin-Le Chatelier (PLC) effect. The model includes nucleation, multiplication and propagation of dislocation loops in the time evolution equation for the mobile dislocation density. We also include other well known dislocation transformation mechanisms to forest dislocation. Several of these dislocation mechanisms are drawn from the AK model for the PLC effect. To illustrate the ability of the model to predict force fluctuations that match experiments, we use the work of Kiely at that employs a spherical indenter. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rate, the radius the indenter etc. The model predicts all the generic features of nano-indentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plas¬ticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths where the load drops disappear, the hardness shows decreasing trend, though marginal. The second problem we consider is the load controlled mode of indentation where sev¬eral displacement jumps of decreasing magnitudes are seen. Even though, the LC mode is routinely used in nano-indentation experiments, there are no models or simulations that predict the generic features of force-displacement curves, in particular, the existence of sev¬eral displacement jumps of decreasing magnitudes. The basic reason for this is the inability of these methods to impose constant load rate during displacement jumps. We then show that an extension of the model for the DC mode predicts all the generic features when the model is appropriately coupled to an equation defining the load rate. Following the model for DC mode, we retain the system of coupled nonlinear time evolution equations for mobile and forest dislocation densities that includes nucleation, multiplication, and propagation threshold mechanisms for mobile dislocations, and other dislocation transformation mechanisms. The commonly used Berkovich indenter is considered. The equations are then coupled to the force rate equation. We demonstrate that the model predicts all the generic features of the LC mode nano-indentation such as the existence of an initial elastic branch followed by several displacement jumps of decreasing magnitudes, and residual plasticity after unloading for a range of model parameter values. In this range, the predicted values of the load, displacement jumps etc., are similar to those found in experiments. Further, optimized set of parameter values can be easily determined that provide a good fit to the load-indentation depth curve of Gouldstone et al for single crystals of Aluminum. The stress corresponding to the maximum force on the Berkovich elastic branch is close to the theoretical yield stress. We also elucidate the ambiguity in defining hardness at nanometer scales where the displacement jumps dominate. The approach also provides insights into several open questions. The third problem we consider is the indentation size effect. The conventional definition of hardness is that it is the ratio of the load to the residual imprint area. The latter is determined by the residual plastic indentation depth through area-depth relation. Yet, the residual plastic indentation depth that is a measure of dislocation mobility, never enters into most hardness models. Rather, the conventional hardness models are based on the Taylor relation for the flow stress that characterizes the resistance to dislocation motion. This is a complimentary property to mobility. Our idea is to provide an alternate way of explaining the indentation size effect by devising a framework that directly calculates the residual plastic indentation depth by integrating the Orowan expression for the plastic strain rate. Following our general approach to plasticity problems, we set-up a system of coupled nonlinear time evolution equations for the mobile, forest (or the SSD) and GND densities. The model includes dislocation multiplication and other well known dislocation transformation mechanisms among the three types of dislocations. The main contributing factor for the evolution of the GND density is determined by the mean strain gradient and the number of sites in the contact area that can activate dislocation loops of a certain size. The equations are then coupled to the load rate equation. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rates, the geometrical quantities defining the Berkovich indenter including the nominal tip radius and other parameters. The hardness is obtained by calculating the residual plastic indentation depth after unloading by integrating the Orowan expression for the plastic strain rate. We demonstrate that the model predicts all features of the indentation size effect, namely, the increase in the hardness with decreasing indentation depth and the linear relation between the square of the hardness and inverse of the indentation depth, for all but 200nm, for a range of parameter values. The model also predicts deviation from the linear relation of H2 as a function of 1/z for smaller depths consistent with experiments. We also show that it is straightforward to obtain optimized parameter values that give a good fit to polycrystalline cold-worked copper and single crystals of silver. Our approach provides an alternate way of understanding the hardness and indentation size effect on the basis of the Orowan equation for plastic flow. This approach must be contrasted with most models of hardness that use the SSD and GND densities as parameters. The thesis is organized as follows. The first Chapter is devoted to background material that covers physical aspects of different kinds of plastic deformation relevant for the thesis. These include the conventional yield phenomenon and the intermittent plastic deformation in bulk materials in alloys exhibiting the Portevin-Le Chatelier (PLC) effect. We then provide background material on nano-and micro-indentation, both experimental aspects and the current status of the DC controlled and LC controlled modes of nano-indentation. Results of simulation methods are briefly summarized. The chapter also provides a survey of hardness models and the indentation size effect. A critical survey of experiments on dislocation microsructure that contradict / support certain predictions of the NixGao model. The current status of numerical simulations are also given. The second Chapter is devoted to introducing the basic steps in modeling plastic deformation using nonlinear dynamical approach. In particular, we describe how the time evolution equations are constructed based on known dislocation mechanisms such as nucleation, multiplication formations of junctions etc. We then consider a model for the continuous yield phenomenon that involves only the mobile and forest densities coupled to constant strain rate condition. This problem is considered in some detail to illustrate how the approach can be used for modeling nano-indentation and indentation size effect. The third Chapter deals with a model for displacement controlled nano-indentation. The fourth Chapter is devoted to adopting these equation to the load controlled mode of nano¬indentation. The fifth Chapter is devoted to modeling the indentation size effect based on calculating residual plastic indentation depth after unloading by using the Orowan’s expression for the plastic strain rate. We conclude the thesis with a Summary, Discussion and Conclusions.
69

Magnetic And Transport Studies On Nanosystems Of Doped Rare Earth Manganites And VPP PEDOT

Padmalekha, K G 10 1900 (has links) (PDF)
The study of novel properties of materials in nanometer length scales has been an extensive area of research in the recent past. The field of nanosciece and nanotechnology deals with such studies and has gained tremendous importance because of the potential applications of these nanosystems in devices. Many of the bulk properties tend to change as a function of size, be it particle size in case of nanoparticles, or thickness in case of very thin films. Not only is it important to study these changes from the point of view of applications, but also the interesting physics behind such changes prompts further research and exploration in this area. In this thesis we try to see how changes in the length scales affect the properties of nanoparticles and how change in thickness affects the properties of thin films, along with making an effort towards measurements of conductivity in the nanoscale using the technique of electron magnetic resonance (EMR) signal shape analysis. Electron magnetic resonance is a general term used to combine both electron paramagnetic resonance (EPR) and ferromagnetic resonance (FMR). This thesis deals with mainly two kinds of systems viz., nanoparticles of doped rare earth manganites and thin films of the conducting polymer, vapor phase polymerized polyethylendioxythiophene (VPP PEDOT). The general formula for doped manganites is A1-xBxMnO3 where A is a rare earth trivalent cation like La3+, Pr3+, Nd3+..., and B is an alkaline earth divalent cation like Sr2+, Ca2+, Ba2+... These together with Mn and O form the distorted perovskite structure to which manganites belong. The phase diagram of doped manganites involves many interesting phases like ferromagnetic metallic, antiferromagnetic insulating and charge ordered insulating phases. The magnetic properties of the manganites are governed by exchange interactions between the Mn ion spins. These interactions are relatively large between two Mn spins separated by an oxygen atom and are controlled by the overlap between the Mn d-orbitals and the O p-orbitals. The changing Mn-O-Mn bond lengths and bond angles as a function of the radius of the A and B cations [1, 2], and the different magnetic interactions among the Mn3+ and Mn4+ ions together are responsible for the different phases that we see in manganites as a function of temperature and magnetic field. Manganites have potential applications in the field of spintronics because of their colossal magnetoresistance (CMR) [3] and half-metallic [4] properties. Studies on nanoscale manganites have shown that as size reduces, their electrical and magnetic properties change significantly[5]. By changing the morphology and grain size, the properties of CMR manganites can be tuned [6-9]. Phase separation seems to disappear in nanoparticles compared to bulk [10]. In the charge ordered manganites, size reduction is known to bring about suppression of charge order [11], emergence of ferromagnetism [12, 13] and even metallicity in some nanostructures [12]. The conducting polymer under study viz., VPP PEDOT is in a semiconducting phase at room temperature and becomes more insulating as temperature reduces. It is a technologically important polymer which has cathodically coloring property, can be used as a highly conducting electrode in organic solar cells and organic LEDs [14-16]. In the following we give a summary of the results reported in the thesis chapter by chapter. Chapter 1: This chapter of the thesis consists of an introduction to the physics of manganites and the technique of EMR. This includes a detailed account of previous EMR studies done on manganites, in particular nano manganites. There is a section about different line shapes observed in EMR of manganites, their origin and how to fit them to an appropriate lineshape function [17]. There is an introduction to the transport properties of conducting polymers, including how magnetic fields can affect the transport and the mechanism behind variable range hopping transport which is the dominant kind of transport in such polymeric systems. There is also a description of the different experimental methods and instruments used to study the systems in the thesis and their working principles. They are: EPR spectrometer, SQUID magnetometer, Janis cryostat with superconducting magnet, atomic force microscope (AFM) and transmission electron microscope (TEM). Chapter 2: This chapter deals with the method of contactless conductivity of nanoparticles using EMR lineshape analysis. It is difficult to measure the conductivity of individual nanoparticles by putting contacts. Other methods tend to include the contribution of grain boundaries which mask the grain characteristics [5]. We have introduced a new contactless method to measure the conductivity of nanoparticles in a contactless manner [18]. Metallic nanoparticles in which the skin depth is less than the size of the particles, exhibit an asymmetric EMR signal called the Dysonian [19]. Dysonian lineshape is an asymmetric lineshape with the so-called A/B ratio >1, where, A is the amplitude of the low field half of the derivative and B is the amplitude of the high field half. In a ferromagnetic conducting sample, the lineshape has contributions from the Dysonian part and also a part which arises due to magnetocrystalline anisotropy [20]. We have developed a method of deconvoluting the signals from conducting nanoparticles to take out the Dysonian part from them and measure the A/B ratio as a function of temperature. The A/B ratio thus determined can then be used to find out the ratio of the sample size to the skin depth using the work by Kodera [21]. The skin depth can be used to determine the conductivity by using the relationship  = (1/)1/2, where,  is the measuring frequency,  is the conductivity and  is the permeability. This technique has been used to determine the conductivity as a function of temperature (from 60 K to 300 K) of La0.67Sr0.33MnO3 (LSMO) nanoparticles of average size 17 nm. The method has been cross-checked by measuring the conductivity of bulk LSMO particles at 300 K by EMR lineshape analysis method and by standard four-probe method, which give conductivity values close to each other within experimental error. Chapter 3: In this chapter, we report a novel phenomenon of disappearance of electron-hole asymmetry in nanoparticles of charge ordered Pr1-xCaxMnO3 (PCMO). In bulk PCMO there is asymmetry in electric and magnetic properties seen on either side of x = 0.5. In the samples with x = 0.36 (hole doped: called PCMH) and x = 0.64 (electron doped: called PCME), the bulk sample has opposite g-shifts as observed in EPR signals [22]. PCME sample shows g-value less than and PCMH sample shows g-value greater than the free electron g-value at room temperature. This is explained using the opposite sign of the spin-orbit coupling constant for the two different kinds of charge carriers. But when the size of PCMH and PCME is reduced to nanoscale (average size ~ 20 nm), the g-shift was seen on the same side i.e., positive and almost equal g-shift in both cases. This points towards a disappearance of electron-hole asymmetry at nanoscale. This positive g-shift is analyzed in the two cases in the light of disappearance of charge ordering and emergence of ferromagnetism in these systems, since emergence of ferromagnetic hysteresis is noticed at low temperatures in both nano PCMH and nano PCME. In nano PCMH, charge ordering completely disappears and in nano PCME it weakens. Exchange bias is seen in both the systems, suggestive of core-shell structure [23] in the nanoparticles. Other competing factors include spin-other orbit interactions and size reduction induced metallicity [12] which can average out the anisotropies in the system, causing the asymmetry to disappear. Chapter 4: This chapter deals with thickness induced change in transport mechanism in VPP PEDOT thin films. Two samples were studied with average thickness of 120 nm (VP-1) and 150 nm (VP-2). The average room temperature conductivity of VP-1 was found to be 126 Scm-1 and VP-2 was 424 Scm-1. The transport mechanism in VP-1 is seen to be 2-dimensional variable range hopping (VRH) [24]. However, as the thickness increases by 30 nm, the transport mechanism in VP-2 is found to be 3-dimensional VRH. The low temperature magnetotransport is analyzed in the two systems and it shows that there is wavefunction shrinkage in both the systems at 1.3 K [24]. The DC transport results are cross checked with AC transport data at 5 different temperatures in the frequency range of 40 Hz to 110 MHz. The data can be analyzed by using the extended pair approximation model [25]. The AC transport shows the presence of a critical frequency 0 which marks the transition from the frequency independent to a frequency dependent region. The value of 0 decreasing with decreasing temperature suggests that the system is becoming more insulating and it supports the DC transport model of VRH. The morphological studies were done using AFM which revealed higher grain size for VP-2, confirming the direct correlation of the average grain size with the conductivity of the sample. Chapter 5: summarizes the main conclusions of the thesis, also pointing out some future directions for research in the field.
70

Fabrication and characterization of sub-micron and nanoscale structures in commercial polymers

Ibrahim, Fathima Shaida January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Takashi Ito / This dissertation describes the fabrication and characterization of nanoscale structures in commercially available polymers via multiphoton ablation and bottom-up self assembly techniques. High-resolution surface imaging techniques, such as atomic force microscopy (AFM) and chemical force microscopy (CFM) were used to characterize the physical features and chemical properties, respectively, of these nanoscale structures. Fabrication using both top-down and bottom-up methods affords flexibility in that top-down allows random, user-defined patterning whereas bottom-up self assembly produces truly nanoscale (1-100nm) uniform features. Multiphoton induced laser ablation, a top-down method, was used to produce random sub-micron scale features in films of poly(methylmethacrylate) (PMMA), polystyrene (PS), poly(butylmethacrylate) (PBMA) and poly[2-(3-thienyl)ethyloxy-4-butylsulfonate] (PTEBS). Features with 120-nm lateral resolution were obtained in a PMMA film which was concluded to be the best polymer for use with this method. It was also found that etching resolution was highest for polymers having high glass transition temperatures, low molecular weights and no visible absorption. Bottom-up self assembly of polystyrene-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer and UV/acetic acid treatment produced nanoscale cylindrical domains supported by a substrate. AFM imaging at the free surface showed metastable vertical PMMA domain orientation on gold substrates. In contrast, horizontal orientation was obtained on oxide-coated silicon regardless of surface roughness and annealing conditions. The horizontal domain orientation on silicon substrates was ideal to probe simultaneously the difference in surface charge and hydrophilicity of the two distinct nanoscale domains of UV/AcOH treated PS-b-PMMA films. CFM on UV/acetic acid etched PS-b-PMMA revealed the presence of –COO- groups which were found to be more abundant inside the etched trenches than on the unetched PS matrix as shown by ferritin adsorption onto etched PS-b-PMMA. Lastly, the PS-b-PMMA was cast as a free-standing monolith at the end of a quartz micropipette. AFM revealed circular PMMA dots at the free surface, indicating alignment parallel to the long axis of capillary. Ion conductance within nanochannels indicated surface –charge governed ion transport at low KCl concentrations and flux of negatively-charged sulphorhodamine dye demonstrated the permselective nature of nanochannels.

Page generated in 0.6732 seconds