• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 380
  • 324
  • 71
  • 54
  • 16
  • 10
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1042
  • 1042
  • 223
  • 189
  • 81
  • 77
  • 73
  • 71
  • 70
  • 69
  • 67
  • 67
  • 67
  • 62
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Kotelna spalující zemní plyn / Gas fired boiler house

Hosnedl, Pavel January 2012 (has links)
This master thesis deals with problems of determining operational and safety risks at gas boiler room in office building with total output of 4×49 kW. The gas boiler room is equipped with four boilers Geminox THRi 10-50. The aim of this master thesis is to determine the potential operational and safety risks of gas boiler room. The master thesis is divided into several parts, when the first part is describing the current situation with some theoretical knowledge and risk analysis. This part also outlines possible solutions for identification and quantification of risks to the gas boiler room. The specific risk factors are determined at other part of master thesis and there is also their analysis, which is solved by cause and effect diagram and by Failure Mode and Effect Analysis. The specific precautions are suggested for chosen risks in final part of master thesis.
552

Termodynamické tepelné čerpadlo / Thermodynamic heat pump

Kadlec, Stanislav January 2017 (has links)
The aim of the Diploma Thesis is to discuss the design and construction solution for circulation of the thermodynamic heat pump especially used in the heating industry with stoichiometric combustion of chosen natural gas. The basic components of the proposed heat pump are turbine, compressor and gearbox. To solve the presented aims, the thermodynamic calculation of the individual components, the determination of the efficiency of the whole equipment and the analysis of the physical properties of the natural gas with regard to the specified input and output parameters were considered. In addition, an analysis of the individual components design of the proposed equipment was carried out, on the basis the technically most acceptable variant was chosen and the equipment construction was carried out incl. connecting elements. Drawing documentation is part of the attachments. On the basis of the analysis, it can be stated that the proposed plant leads to energy savings, is ecologically sufficient and has been shown to have approximately twice the amount of heat dissipated than without its use.
553

Investigation of steam reformation of natural gas for the very small scale production of hydrogen fuel for light duty vehicles in appliance-type refueling systems

Lomax, Franklin D. 05 September 2009 (has links)
<p>Fuel cell propulsion systems fueled directly with hydrogen are being seriously considered as a means of powering future light-duty vehicles. One of the greatest impediments to the introduction of such vehicles is the perception that transitional infrastructure to supply hydrogen will be an insurmountable obstacle. This transitional infrastructure requirement might be met through the introduction of very small scale refueling appliances which provide compressed hydrogen for either one vehicle or a small fleet of vehicles. These small appliances must be efficient, non-polluting and low in cost.</p> <p> The report investigates the feasibility of one type of refueling appliance based upon chemical reformation of natural gas in a steam reformation process. A natural gas steam reformer employing a palladium-alloy membrane hydrogen separator operated at high pressure and temperature (15+ bar and about 1200 K), should attain a net system efficiency between 60% and 80% (LHV).</p> <p> Initial kinetic modeling of the reformer suggested that for mono-tubular reactor geometries the reactor was heat transfer limited. Thus, parallel micro-tubular or plate-frame geometries might yield the highest space velocity. Critical issues which must be resolved include required degree of hydrogen recycle for catalyst stability as well as the catalyst-specific kinetics. <p> Reforming of natural gas to hydrogen appears to be a viable option for very small scale hydrogen refueling appliances. A good deal of experimental and analytical design work is required to develop such systems, but they should meet the important requirements for this application.</p> / Master of Engineering
554

Gas Sorption, Diffusion and Permeation in a Polymer of Intrinsic Microporosity (PIM-7)

Alaslai, Nasser Y. 08 May 2013 (has links)
The entire world including Saudi Arabia is dependent on natural gas to provide new energy supplies for the future. Conventional ways for gas separation are expensive, and, hence, it is very important to reduce the cost and lower the energy consumption. Membrane technology is a relatively new separation process for natural gas purification with large growth potential, specifically for off-shore applications. The economics of any membrane separation process depend primarily on the intrinsic gas permeation properties of the membrane materials. All current commercial membranes for natural gas separation are made from polymers, which have several drawbacks, including low permeability, moderate selectivity, and poor stability in acid gas and hydrocarbon environments. The recent development of polymeric materials called “polymers of intrinsic microporosity” (PIMs) provide a new class of high-performance membrane materials that are anticipated to be used in natural gas separation processes including, but not limited to, acid gas removal and separation of hydrocarbons from methane. PIM-7 is an excellent example of a material from the PIMs series for gas separation. It was selected for this work since it has not been extensively tested for its gas permeation properties to date. Specifically, sorption and mixed-gas permeation data were not available for PIM-7 prior to this work. Sorption isotherms of N2, O2, CH4, CO2, C2H6, C3H8 and n-C4H10 were determined over a range of pressures at 35 oC for PIM-7 using a custom-designed dual-volume pressure decay system. Condensable hydrocarbon gases, such as C3H8 and n-C4H10, show significantly higher solubility than the other less condensable gas of the test series due to their high affinity to the polymer matrix. Dual-mode sorption model parameters were determined from the sorption isotherms. Henry’s law solubility, Langmuir capacity constant and the affinity constant increased with gas condensability. Permeability coefficients of He, H2, N2, O2, CH4, CO2, C2H6, C3H8 and n-C4H10 were measured at 35 oC and 2 atm feed pressure using a home-made constant-volume/variable pressure pure-gas permeation system. Hydrocarbon-induced plasticization of PIM-7 was confirmed by measuring the permeability coefficients of C3H8 and n-C4H10 as function of pressure at 35 oC. Diffusion coefficients were calculated from the permeability and solubility data at 2 atm for all penetrants tested and as function of pressure for C3H8 and n-C4H10; the values for C3 and C4 increased significantly with pressure because of plasticization. Physical aging was studied by measuring the permeability coefficients of a number of gases in fresh and aged films. Mixed-gas permeation tests were performed for a feed mixture of 2 vol% n-butane and 98 vol% methane. Based on BET surface area measurements using N2 as a probe molecule, PIM-7 is a microporous polymer (S = 690 m2/g) and it was expected to exhibit selectivity for n-butane over methane, as previously observed for other microporous polymers, such as PIM-1 and PTMSP. Surprisingly, PIM-7 is more permeable to methane than n-butane and exhibits a mixed-gas methane/n-butane selectivity of up to 2.3. This result indicates that the micropore size in PIM-7 is smaller than that in other PIMs materials. Consequently, PIM-7 is not a suitable candidate membrane material for separation of higher hydrocarbons from methane.
555

Natural gas storage level forecasting using temperature data

Sundin, Daniel January 2020 (has links)
Even though the theory of storage is historically a popular view to explain commodity futures prices, many authors focus on the oil price link. Past studies have shown an increased futures price volatility on Mondays and days when natural gas storage levels are released, which could both implicate that storage levels and temperature data are incorporated in the prices. In this thesis, the U.S. natural gas storage level change is studied as a function of the consumption and production. Consumption and production are furthered segmented and separately forecasted by modelling inverse problems that are solved by least squares regression using temperature data and timeseries analysis. The results indicate that each consumer consumption segment is highly dependent of the temperature with R2-values of above 90%. However, modelling each segment completely by time-series analysis proved to be more efficient due to lack of flexibility in the polynomials, lack of used weather stations and seasonal patterns in addition to the temperatures. Although the forecasting models could not beat analysts’ consensus estimates, these present natural gas storage level drivers and can thus be used to incorporate temperature forecasts when estimating futures prices.
556

The influence of geopolitical conflicts on energy dependency : A case study on the effect of the Ukrainian conflicts on gas dependency involving Russia and the European Union

Ottens, Jesse January 2022 (has links)
In recent decades the EU has become more dependent on Russia for gas. At the same time, there were several geopolitical conflicts in Ukraine that disrupted gas relations and thus put dependence under pressure. This research aimed to analyse the relationship between geopolitical conflicts and dependency. By placing the relationship in the light of the theory of interdependency and the asymmetry theory, a new view was given to this exciting relationship. This problem was approached using an abductive research method, the singular case study. As a result of this, the geopolitical conflicts of Ukraine are used to interpret the relationship between geopolitical conflict and dependency. Trade, dependency and sanctions were the main variables analysed. The analysis shows a crucial link between actors’ economic and political interests and their influence on dependency. In addition, the change of dependency after the geopolitical conflicts in Ukraine was remarkable. Moreover, these changed in a negative sense. It can be concluded that there is indeed a link between the geopolitical conflicts in Ukraine and the gas dependency of the EU on Russia. More research has to be done to generalise this connection to other cases, and more
557

Substituting Natural Gas with Solar Energy in Industrial Heating Applications : A Multiple Case Study within Italy and Spain

Turk, Mustafa January 2021 (has links)
With the increasing awareness of global warming and the need for limiting greenhouse gas emissions, several sectors are witnessing comprehensive transformations towards sustainable generation and consumption. The European Union can be considered the home for most of these transformations given the union’s efforts to enable decarbonization through regulatory frameworks and initiatives. However, one overlooked source of carbon emissions is the industrial heating sector which is heavily dependent on fossil fuel. Emerging technologies such as solar thermal could provide a solution for limiting the greenhouse gases emitted by this sector. This study examines the factors influencing the diffusion of solar thermal technology and its potential for substituting natural gas in the industrial heating sector. Specifically, the study examines the thermal energy supply side as being a potential facilitator for the diffusion of solar thermal technology. Certain elements from Everett Rogers’ (1995) work on the diffusion of innovations are applied to solar thermal technology along with the concept of lead users by Hippel (1986). The study follows a qualitative approach in collecting and analyzing data through interviews and document analysis. Experts from the energy sector were interviewed along with examining public documents of two major utility companies. The findings suggest that utility companies examined, despite their evident decarbonization efforts, do not represent a suitable vehicle for the diffusion of solar thermal technology. Instead, a business model based on energy efficiency could be the possible breakthrough for this technology. Finally, the study concludes with suggestions for possible actions to expedite the diffusion of solar thermal in the industrial sector.
558

Ruské snahy o export zemního plynu do Čínské lidové republiky do roku 2014 / Russian efforts to export natural gas to People's Republic of China until 2014

Imrich, Jakub January 2015 (has links)
Diploma thesis Russian efforts to export natural gas to People's Republic of China until 2014 is work discussing cooperation in the field of Russian natural gas deliveries to China. My aim is to analyze this cooperation and answer the question what circumstances lead these two countries to signing the deal in May 2014. This deal is unquestionably the biggest milestone in bilateral relations of Moscow and Beijing so far. The aim of the work however is not going into complex political problems of both countries. For this paper it is more important to analyze main obstacles which limit the cooperation and focus on the circumstances which allowed it to develop further. Diploma thesis is divided into several chapters. First part provides a brief view into the past and explains the absence of closer trade relations before. The next chapter focuses on the fact that this cooperation is extremely important for both aforementioned states. The third section examines the problem of Russia and China which restrict the cooperation. It also mentions outside factors, such as competing projects. Another three chapters are most important in the thesis and deal with the analysis of individual negotiations, leading to a final agreement in May 2014. Cooperation in the supply of gas in liquefied form which already works...
559

Biomass and Phycocyanin from Oil and Natural Gas Extraction Produced Water Utilizing a Cyanobacteria Dominated Rotating Algal Biofilm Reactor (RABR)

Wood, Jonathan L. 01 August 2018 (has links)
The production of cyanobacterial biofilm biomass and phycocyanin from Rotating Algal Biofilm Reactors utilizing undiluted produced water from oil and natural gas extraction as a culture medium was investigated in this study. Produced water is the largest waste stream generated by the oil and natural gas industries and represents a large volume of non-potable water that may be available for algae culture with minimal impact on freshwater resources. Combining the use of produced wastewater as culture medium with the production of high value algal pigments, such as phycocyanin, may increase the economic viability of algae culture and wastewater purification. High value phycocyanin pigment production and methods to increase phycocyanin yields with light limitation were examined in this study. A unique cyanobacteria species was isolated from the Logan City Wastewater Treatment Facility in Logan, Utah and used in conjunction with the Rotating Algal Biofilm Reactor platform for the duration of this study. Between the “high” and “low” light treatments used in this study, the high light treatment showed nearly twice the biomass production as the low light culture (4.8±0.7 vs. 2.7±0.4 g/m2-day). The low light biomass contained 87.6% more of the phycocyanin pigment, with a 230% increase in purity, then the biomass from the high light treatment. The areal footprint productivity of phycocyanin per day was the same for both the light treatments. An evaluation of growth attachment materials was conducted with cotton rope and cotton conveyer cloth materials found to be the most durable and having the highest yields of harvestable biomass. The cotton rope and cotton conveyor cloth materials were evaluated on a floating Rotating Algal Biofilm Reactor operating in a 2000 L outdoor produced water pond. The cotton rope yielded a 140% increase in biomass vs. the cotton cloth although the compositions varied greatly. The cotton cloth biomass was composed of mainly healthy algae with higher phycocyanin yields while the cotton rope showed a higher proportion of non-algae organisms and little phycocyanin. These results show promise for the utilization of produced water to grow cyanobacteria biofilms with modifiable biomass characteristics as a source of high value phycocyanin pigments.
560

Preliminary investigation for underground storage of pipeline gas in the Bruer and Flora pools, Mist gas field, Columbia County, Oregon

Townley, Paul Joseph 01 January 1985 (has links)
Northwest Natural Gas Canpany has proposed to convert the Bruer and Flora pools of the Mist Gas Field in west-central Columbia County, Northwestern Oregon, to pipeline gas storage reservoirs. Conversion to underground storage of pipeline gas in these depleted gas reservoirs would be the first in the Pacific Northwest. The Bruer and Flora Pools are fault trapped within the Cowlitz Formation. The shales overlying the Cowlitz Formation create a local seal for these gas reservoirs. X-ray diffraction and density log measurements suggest that the clay in these shales is primarily composed of smectite, which provides an excellent caprock seal. The reservoir rock of the Bruer and Flora Pools is the arkosic Cl ark and Wilson Sand. An average weighted grain density for the sand is 2.65 g/cm3. The abundance of potassium feldspar in the sand, hence K40, creates a background gamma radiation for the sand roughly equal to that of the shale, making the sand and shale virtually indistinguishable on the gamma ray log. Bottan Hole Temperatures (BHT), which were recorded on open hole logs, indicate the Bruer Pool is 7°C (20°F) wanner than the Flora Pool, even though the Flora Pool is deeper. This temperature anomaly may be the result of equipment variation. A calibrated temperature survey would remove any discrepancies. A comparison of the thermal gradient determined in a previous study of the Oregon Coast Range and a gradient determined using BHT, suggest that BHT provide a good approximation of formation temperature. Utilizing the formation water analysis determined from four different wells in the Mist Gas Field, average total dissolved solids was found to be 24, 444 mg/l. Of the four analyses, the sample from Well CC#6 R/D2 is considered to be the most representative of the Bruer and Flora fools formation waters. Analysis of the four samples using the Palmer System suggests that the formation water of the Cowlitz Formation is in the early stages of sea water diagenasis. Formation water resistivity (Rw) was determined using a chemical and spontaneous potential analysis. Rw derived using chemical analysis averaged 0.175 ohm-meters and is considered the ITDst precise. Water saturation determined using the Archie saturation equation averaged 47.5% and ranged from 26.4 to 80.0% for the zone 814-836 meters (2670-2742 feet) in CC#10. These results are similar to those determined by the Thermal Time Decay (TDT) log.

Page generated in 0.0878 seconds