Spelling suggestions: "subject:"naval chip"" "subject:"naval hip""
1 |
Modeling Underwater Explosion (UNDEX) Shock Effects for Vulnerability Assessment in Early Stage Ship DesignMathew, Ajai Kurian 20 March 2018 (has links)
This thesis describes and assesses a simplified tool for modeling underwater explosion shock effects during early naval ship concept design. A simplified fluid model using Taylor flat-plate theory is incorporated directly into the OpenFSI module code in Nastran and used to interface with the structural solver in Nastran to simulate a far-field shockwave impacting the hull. The kick-off velocities and the shock spectra captured in this computationally efficient module is compared to results from a high-fidelity CASE (Cavitating Acoustic Spectral Element) fluid model implemented with the ABAQUS/Nastran structural solver to validate the simplified framework and assess the sufficiency of this very simple but, fast approach for early stage ship design. / Master of Science / This thesis describes and assesses a simplified tool for modeling underwater explosion shock effects during early-stage naval ship design. Far-field explosions have a significant effect in terms of damage to equipment and mission capability of a ship. A simplified fluid-structure interaction model using the concept “Taylor flat-plate theory” is developed to simulate a far-field shockwave impacting the hull. This model is directly incorporated inside ‘OpenFSI’, a module used to couple an external code with the Nastran structural solver software. The initial peak velocity in the time-history and the shock spectra characteristics captured in this computationally efficient module is compared to results from a high-fidelity “CASE” (Cavitating Acoustic Spectral Element) fluid-structure interaction model. The “CASE” model implemented with the ABAQUS/Nastran structural solver is used to validate the simplified framework and assess the sufficiency of this very simple, but fast approach for early stage ship design.
|
2 |
Network-Based Naval Ship Distributed System Design and Mission Effectiveness using Dynamic Architecture Flow OptimizationParsons, Mark Allen 16 July 2021 (has links)
This dissertation describes the development and application of a naval ship distributed system architectural framework, Architecture Flow Optimization (AFO), and Dynamic Architecture Flow Optimization (DAFO) to naval ship Concept and Requirements Exploration (CandRE). The architectural framework decomposes naval ship distributed systems into physical, logical, and operational architectures representing the spatial, functional, and temporal relationships of distributed systems respectively. This decomposition greatly simplifies the Mission, Power, and Energy System (MPES) design process for use in CandRE. AFO and DAFO are a network-based linear programming optimization methods used to design and analyze MPES at a sufficient level of detail to understand system energy flow, define MPES architecture and sizing, model operations, reduce system vulnerability and improve system reliability. AFO incorporates system topologies, energy coefficient component models, preliminary arrangements, and (nominal and damaged) steady state scenarios to minimize the energy flow cost required to satisfy all operational scenario demands and constraints. DAFO applies the same principles as AFO and adds a second commodity, data flow. DAFO also integrates with a warfighting model, operational model, and capabilities model that quantify tasks and capabilities through system measures of performance at specific capability nodes. This enables the simulation of operational situations including MPES configuration and operation during CandRE. This dissertation provides an overview of design tools developed to implement this process and methods, including objective attribute metrics for cost, effectiveness and risk, ship synthesis model, hullform exploration and MPES explorations using design of experiments (DOEs) and response surface models. / Doctor of Philosophy / This dissertation describes the development and application of a warship system architectural framework, Architecture Flow Optimization (AFO), and Dynamic Architecture Flow Optimization (DAFO) to warship Concept and Requirements Exploration (CandRE). The architectural framework decomposes warship systems into physical, logical, and operational architectures representing the spatial, functional, and time-based relationships of systems respectively. This decomposition greatly simplifies the Mission, Power, and Energy System (MPES) design process for use in CandRE. AFO and DAFO are a network-based linear programming optimization methods used to design and analyze MPES at a sufficient level of detail to understand system energy usage, define MPES connections and sizing, model operations, reduce system vulnerability and improve system reliability. AFO incorporates system templates, simple physics and energy-based component models, preliminary arrangements, and simple undamaged/damaged scenarios to minimize the energy flow usage required to satisfy all operational scenario demands and constraints. DAFO applies the same principles and adds a second commodity, data flow representing system operation. DAFO also integrates with a warfighting model, operational model, and capabilities model that quantify tasks and capabilities through system measures of performance. This enables the simulation of operational situations including MPES configuration and operation during CandRE. This dissertation provides an overview of design tools developed to implement this process and methods, including optimization objective attribute metrics for cost, effectiveness and risk.
|
3 |
Network-Based Naval Ship Distributed System Design using Architecture Flow OptimizationParsons, Mark A. January 2019 (has links)
This thesis describes the application of a distributed system architecture framework and Architecture Flow Optimization (AFO) to naval ship Concept & Requirements Exploration (C&RE). It describes refinements to both C&RE and AFO, and naval surface combatant concept design case studies. The architectural framework decomposes naval ship distributed systems into the physical, logical, and operational architectures representing the spatial, functional, and temporal relationships of distributed systems respectively. This decomposition greatly simplifies the Mission, Power, and Energy System (MPES) design process for use in C&RE. AFO is a network-based linear programming optimization method used to design and analyze MPES at a sufficient level of detail to understand system energy flow, define MPES architecture and sizing, reduce system vulnerability and improve system reliability. AFO incorporates system topologies, energy coefficient component models, preliminary arrangements, and (nominal and damaged) steady state scenarios to minimize the energy flow cost required to satisfy all operational scenario demands and constraints. This thesis provides an overview of design tools developed to implement this process and methods, including objective attribute metrics for cost, effectiveness and risk, ship synthesis model, hullform exploration and MPES explorations using design of experiments (DOEs) and response surface models. / M.S. / The design of modern warships presents many unique challenges not faced in the design of most commercial ships or past generations of warships. The objectives of warship design (e.g. effectiveness, design risk, and total lifecycle cost) cannot be summarized in a single quantitative metric as commonly done in commercial ship design (e.g. required freight rate: the minimum market price of a commodity to make a commercial ship design with a certain cargo capacity profitable). Furthermore, misison, power, and energy systems (MPES) of modern warships have become increasingly interdependent and complex, especially those of naval surface combatants (non-submarine warships designed to engage in direct combat with other ships). Determining quantitative metrics for these objectives is a difficult task to begin with. Determining accurate values for these metrics in early stage design (when designs have little detailed specifications and some technologies may even be still be in development) is another challenge altogether. This thesis describes simple and robust methods and processes to evaluate a warship’s arrangement and operational characteristics. Survivability characteristics, characteristics related to a warship’s ability to complete missions despite battle damage, are of particular interest in these methods. These methods incorporate physics and energy-based means of assessment rather than using historical parametric models that are insufficient in assessing new and revolutionary warship designs.
|
4 |
Modeling of Distributed Naval Ship Systems using Architecture Flow OptimizationRobinson, Kevin Michael 06 July 2018 (has links)
Successful future surface combatants in the US Navy must embrace the growing integration and interdependency of propulsive and combat systems. Traditionally, the development of Hull, Mechanical and Electrical systems has been segregated from the development of weapons and sensors. However, with the incorporation of high energy weapons into future ship configurations, ship design processes must evolve to embrace the concept of a System of Systems being the only way to achieve affordable capability in our future fleets.
This thesis bridges the gap between the physical architecture of components within a ship and the way in which they are logically connected to model the energy flow through a representative design and provide insight into sizing requirements of both system components and their connections using an Architecture Flow Optimization (AFO).
This thesis presents a unique method and tool to optimize naval ship system logical and physical architecture considering necessary operational conditions and possible damage scenarios. The particular and unique contributions of this thesis are: 1) initially only energy flow is considered without explicit consideration of commodity flow (electric, mechanical, chilled water, etc.), which is calculated in post-processing; 2) AFO is applied to a large and complex naval surface combatant system of systems, demonstrating its scalability; 3) data necessary for the AFO is extracted directly from a naval ship synthesis model at a concept exploration level of detail demonstrating its value in early stage design; and 4) it uses network-based methods which make it adaptable to future knowledge-based network analysis methods and approaches. / Master of Science / The US Navy faces a future where their ships will be required to perform a greater number and increasingly more diverse mission set while the resources provided to them dwindle. Traditionally, propulsive, electrical and weapons systems onboard ships have been segregated in their development, however, with the incorporation of high energy weapons into future ship configurations, the ship design processes must evolve to incorporate these interdependent power consumers. To take advantage of emerging technologies in a resource constrained environment, the future fleet of the US Navy must incorporate the concept of a “System of Systems” early in the ship design process.
This thesis correlates the energy available onboard a ship to how it can be distributed to components in the execution of required missions. Additionally, this thesis provides insight into the sizing requirements of intermediary and auxiliary components using an Architecture Flow Optimization (AFO) by only analyzing energy flow without considering the commodity flow (electricity, mechanical power, chilled water, etc.) which can be calculated post optimization. Using network-based methods allows the AFO to be adaptable to future knowledge-based network analysis methods and approaches while using data directly from a naval ship synthesis model enables the AFO to be scaled to incorporate a large and complex system of systems proving its value to early stage design.
|
5 |
Klassificering av örlogsfartyg, ett bidrag till den militära nyttan?Jonsson, Henrik January 2012 (has links)
Detta arbete i militärteknik undersöker den militära nyttan med användandet av klassificeringssällskap med exemplet Det Norske Veritas(DNV) och dess regelverk på örlogsfartyg med exemplet Korvett typ Visby. Syftet med arbetet är att utifrån klassificeringssällskapets regelverk för örlogsfartyg utreda till vilken utsträckning samt inom vilka områden regelverket kan anses bidra till militär nytta. Den militära nyttan definieras i arbetet som krigföringsförmågan utifrån de sex grundläggande förmågorna vilka i arbetet har satts i en fartygsteknisk kontext. Ansatsen är vidare att redogöra för inom vilka tekniska områden där klassificeringssällskapet bidrar till den militära nyttan främst med avseende på fartygssystem som ombord stödjer förmågorna. Studien kommer fram till att klassificeringssällskapet sätter fokus på ett örlogsfartygs överlevnad. Dess regelverk bidrar till de sex grundläggande förmågorna både direkt men framförallt indirekt, genom de krav vilka ställs på de olika tekniska systemen ombord på ett örlogsfartyg. / This paper in military technology investigates the military benefits of using Classification Societies with the example Det Norske Veritas (DNV) and their rules and procedures on Naval Ships with the example the Visby class corvette. The aim is to investigate in what extent and in what different areas of the society’s rules comply with the military use which in this paper is defined as the ability to conduct combat through the six fundamental abilities. Furthermore the aim is to investigate in what specific areas the society´s rules fit the ability of combat the most, through the systems on board a naval ship that supports the six fundamental abilities. The paper comes to the conclusion that the Classification society puts focus on naval ships survivability. The rules of the classification society supports the fundamental abilities direct but first and foremost indirect through the demands on the different technical areas on board a Naval ship
|
6 |
Architecture Flow Optimization - Refinement and Application for Naval Ship Concept DesignBonsall, Jaxson Todd 31 May 2024 (has links)
This thesis describes the refinement of an Architecture Flow Optimization (AFO) tool for naval surface ship design, specifically focusing on the development of new network and matrix-based methods for AFO formulation and their application in Concept Development. The AFO tool analyzes and optimizes the flow of energy through the ship's Vital Components (VCs) interfacing with a Ship Synthesis and Product Model (SSM), ensuring that all physical and operational constraints are satisfied while minimizing system cost across multiple intact and damaged operational scenarios. The total ship system is described by physical and logical architectures in a network structure comprised of vital component nodes and arcs. These elements form the basis of a linear system of equations in matrix form, the manipulation of which relies heavily on linear algebra and matrix operations. The matrix system of equations is solved using linear programming with a significant improvement in computational efficiency. The solution supports the sizing of individual vital components and the refinement of system logical architecture. It also provides the basic AFO engine necessary to support future refinement of a dynamic architecture flow optimization (DAFO) with the computational speed necessary for rapid solution of dynamic mission scenarios insuring optimized and feasible warfighting reconfiguration, with and without damage. / Master of Science / This thesis describes the refinement of an Architecture Flow Optimization (AFO) tool for naval surface ship design, specifically focusing on the development of new network and matrix-based methods for AFO formulation and their application in naval ship Concept Development processes. The Architecture Flow Optimization tool analyzes and optimizes the flow of energy through the ship's Vital Components (VCs). The AFO tool completes this task by interfacing with a Ship Synthesis and Product Model (SSM), ensuring that all of the ship's physical and operational constraints are satisfied. This is done while minimizing the ship system cost across multiple intact and damaged operational scenarios. The total ship system is described by physical and logical architectures in a network structure comprised of vital components (nodes) and their connections (arcs). These elements form the basis of a linear system of equations in matrix form, the manipulation of which relies heavily on linear algebra and matrix operations. The matrix system of equations is solved using a linear programming algorithm with a significant improvement in computational speed. The solution provided from the optimization supports the sizing of individual vital components and the refinement of the ship system logical architecture. It also provides the basic AFO engine necessary to support future refinement of a dynamic architecture flow optimization (DAFO) with the computational speed necessary for rapid solution of dynamic mission scenarios insuring optimized and feasible warfighting reconfiguration, with and without damage.
|
7 |
Development and Application of Dynamic Architecture Flow Optimization to Assess the Impact of Energy Storage on Naval Ship Mission Effectiveness, System Vulnerability and RecoverabilityKara, Mustafa Yasin 20 May 2022 (has links)
This dissertation presents the development and application of a naval ship distributed system architecture framework, Architecture Flow Optimization (AFO), Dynamic Architecture Flow Optimization (DAFO), and Energy Storage System (ESS) model in naval ship Concept and Requirements Exploration (CandRE). The particular objective of this dissertation is to determine and assess Energy Storage System (ESS) capacity, charging and discharging capabilities in a complex naval ship system of systems to minimize vulnerability and maximize recoverability and effectiveness. The architecture framework is implemented through integrated Ship Behavior Interaction Models (SBIMs) that include the following: Warfighting Model (WM), Ship Operational Model (OM), Capability Model (CM), and Dynamic Architecture Flow Optimization (DAFO). These models provide a critical interface between logical, physical, and operational architectures, quantifying warfighting and propulsion capabilities through system measures of performance at specific capability nodes. This decomposition greatly simplifies the Mission, Power, and Energy System (MPES) design process for use in CandRE. AFO and DAFO are network-based, linear programming optimization methods used to design and analyze MPESs at a sufficient level of detail to understand system energy flow, define MPES architecture and sizing, model operations, reduce system vulnerability and improve system effectiveness and recoverability with ESS capabilities. AFO incorporates system topologies, energy coefficient component models, preliminary arrangements, and (nominal and damaged) steady state scenarios to minimize the energy flow cost required to satisfy all operational scenario demands and constraints. The refined DAFO applies the same principles as AFO, but adds two more capabilities, Propulsion and ESS charging, and maximizes effectiveness at each scenario timestep. DAFO also integrates with a warfighting model, operational model, and capabilities model that quantify the performance of tasks enabled by capabilities through system measures of performance at specific capability nodes. This dissertation provides a description of the design tools developed to implement these processes and methods, including a ship synthesis model, hullform exploration, MPES explorations and objective attribute metrics for cost, effectiveness and risk, using design of experiments (DOEs) response surface models (RSMs) and Energy Storage System (ESS) applications. / Doctor of Philosophy / This dissertation presents the development and application of a naval ship distributed system architecture framework, Architecture Flow Optimization (AFO), Dynamic Architecture Flow Optimization (DAFO), and Energy Storage System (ESS) design in naval ship Concept and Requirements Exploration (CandRE). The particular objective of this dissertation is to determine and assess Energy Storage System (ESS) capacity, charging and discharging capabilities in a complex naval ship system of systems to minimize vulnerability and maximize recoverability and effectiveness. The architecture framework is implemented through integrated Ship Behavior Interaction Models (SBIMs) that include the following: Warfighting Model (WM), Ship Operational Model (OM), Capability Model (CM), and Dynamic Architecture Flow Optimization (DAFO). These models provide a critical interface between logical, physical, and operational architectures, quantifying warfighting and propulsion capabilities through system measures of performance at specific capability nodes. This decomposition greatly simplifies the Mission, Power, and Energy System (MPES) design process for use in CandRE. AFO and DAFO are network-based, linear programming optimization methods used to design and analyze MPESs at a sufficient level of detail to understand system energy flow, define MPES architecture and sizing, model operations, reduce system vulnerability and improve system effectiveness and recoverability with ESS capabilities. AFO incorporates system topologies, energy coefficient component models, preliminary arrangements, and (nominal and damaged) steady state scenarios to minimize the energy flow cost required to satisfy all operational scenario demands and constraints. DAFO applies the same principles as AFO, but adds two more capabilities, Propulsion and ESS charging, and maximizes effectiveness at each scenario timestep. DAFO also integrates with a warfighting model, operational model, and capabilities model that quantify the performance of tasks enabled by capabilities through system measures of performance at specific capability nodes. This dissertation provides an overview of the design tools developed to implement these process and methods, including a ship synthesis model, hullform exploration, MPES explorations and objective attribute metrics for cost, effectiveness and risk, using design of experiments (DOEs) response surface models (RSMs) and Energy Storage System (ESS) applications.
|
8 |
Refinement of Surface Combatant Ship Synthesis Model for Network-Based System DesignStinson, Nicholas Taylor 17 June 2019 (has links)
This thesis describes an adaptable component level machinery system weight and size estimation tool used in the context of a ship distributed system architecture framework and ship synthesis model for naval ship concept design. The system architecture framework decomposes the system of systems into three intersecting architectures: physical, logical, and operational to describe the spatial and functional relationships of the system together with their temporal behavior characteristics. Following an Architecture Flow Optimization (AFO), or energy flow analysis based on this framework, vital components are sized based on their energy flow requirements for application in the ship synthesis model (SSM). Previously, components were sized manually or parametrically. This was not workable for assessing many designs in concept exploration and outdated parametric models based on historical data were not sufficiently applicable to new ship designs. The new methodology presented in this thesis uses the energy flow analysis, baseline component data, and physical limitations to individually calculate sizes and weights for each vital component in a ship power and energy system. The methodology allows for new technologies to be quickly and accurately implemented to assess their overall impact on the design. The optimized flow analysis combined with the component level data creates a higher fidelity design that can be analyzed to assess the impact of various systems and operational cases on the overall design. This thesis describes the SSM, discusses the AFO's contribution, and provides background on the component sizing methodology including the underlying theory, baseline data, energy conversion, and physical assumptions. / Master of Science / This thesis describes an adaptable component level machinery system weight and size estimation tool used in the context of a preliminary ship system design and naval ship concept design. The system design decomposes the system of systems into three intersecting areas: physical, logical, and operational to describe the spatial and functional relationships of the system together with their time dependent behavior characteristics. Following an Architecture Flow Optimization (AFO), or energy flow analysis based on this system design, vital components are sized based on their energy flow requirements for application in the ship synthesis model (SSM). Previously, components were sized manually or with estimated equations. This was not workable for assessing many designs in concept exploration and outdated equation models based on historical data were not sufficiently applicable to new ship designs. The new methodology presented in this thesis uses the energy flow analysis, baseline component data, and physical limitations to individually calculate sizes and weights for each vital component in a ship power and energy system. The methodology allows for new technologies to be quickly and accurately implemented to assess their overall impact on the design. The optimized flow analysis combined with the component level data creates a more accurate design that can be analyzed to assess the impact of various systems and operational cases on the overall design. This thesis describes the SSM, discusses the AFO’s contribution, and provides background on the component sizing methodology including the underlying theory, baseline data, energy conversion, and physical assumptions.
|
9 |
The skeletal remains of the naval ship Mars : An osteological pre-study for analysing digitally documented skeletalremains in a marine contextFredriksson, Matilda January 2015 (has links)
Denna kandidatuppsats är ämnad att ligga som grund för framtida osteologisk dokumentation ochanalys av de skeletala kvarlevorna från skeppet Mars, och är utförd i samarbete med projektet SkeppetMars (1564).Syftet med denna uppsats är att undersöka och problematisera möjligheterna att analyseradigitalt dokumenterade skeletala kvarlevor i en marin miljö. För att utvärdera möjligheterna ochbegränsningarna med att utföra en digital osteologisk analys utfördes en mindre studie av det digitaltdokumenterade material som hittills insamlats från skeppet Mars. Analysen visade att en osteologiskanalys kan utföras på digitalt dokumenterade skeletala kvarlevor men att det finns begränsningar medatt utföra en analys av ett två dimensionellt källmaterial. Syftet med denna uppsats är även attdiskutera och lyfta fram hur skeletala kvarlevor påverkas under längre tid i marina sediment* samtbräckt/salt vatten. Syftet med denna uppsats är även att diskutera hur en hypotetisk inhämtning och konservering av de skeletala kvarlevorna från skeppet Mars bör utföras. / This bachelor's thesis is intended to lay the ground for future osteological documentation and analysisof the skeletal remains from the naval ship Mars, and is conducted with the project Skeppet Mars(1564). The main purpose of this thesis is to examine and problematise the possibility to analysedigitally documented skeletal remains in a marine context. In order to evaluate the possibilities andlimitations of performing an osteological analysis, a small analysis was conducted on the digitallydocumented skeletal remains collected from the naval ship Mars so far. The analysis showed that anosteological analysis can be performed on digitally documented skeletal remains, there are, however,limitations of performing an analysis on a two dimensional documentation. The secondary purpose ofthis thesis is to discuss and highlight how skeletal remains are affected by marine sediment* andbrackish/saltwater over a long period of time. An additional goal for this thesis is to discuss how ahypothetical retrieval and conservation of the skeletal remains of the naval ship Mars shouldpreferably be performed.
|
10 |
Development of a Quantitative Methodology to Forecast Naval Warship Propulsion ArchitecturesWaller, Brian S 15 May 2015 (has links)
This paper is an investigation into a quantitative selection process of either a mechanical or electrical system architecture for the transmission of propulsion power in naval combatant vessels. A database of historical naval ship characteristics was statistically analyzed to determine if there were any predominant ship parameters that could be used to predict whether a ship should be designed with a mechanical power transmission system or an electric one. A Principal Component Analysis was performed to determine the minimum number of dimensions required to define the relationship between the propulsion transmission architecture and the independent variables. Combining the results of the statistical analysis and the PCA, neural networks were trained and tested to separately predict the transmission architecture or the installed electrical generation capacity of a given class of naval combatant.
|
Page generated in 0.0307 seconds