• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 60
  • 40
  • 39
  • 17
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 413
  • 413
  • 413
  • 140
  • 96
  • 91
  • 88
  • 87
  • 79
  • 61
  • 51
  • 50
  • 42
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Pohyb stlačitelné tekutiny v časově proměnných oblastech / Compressible fluid motion in time dependent domains

Sýkora, Petr January 2012 (has links)
In this work we study the existence of weak solutions for compressible Navier-Stokes equations in unbounded time dependent domains. Using the methods introduced in Feireisl E. Dynamics of Viscous Compressible Fluids we extend the results of article Feireisl E. Neustupa J. Stebel J., Convergence of a Brinkman-type penalization for compressible fluid flows, which studies the flow with a "no-slip" boundary condition on bounded domains. Next, we extend results of article Feireisl E. Kreml O. Nečasová Š. Neustupa J. Stebel J., Weak solutions to the barotropic Navier- Stokes system with slip boundary conditions in time dependent domains, which studies flow with compete Navier boundary condition. Finally, we discuss solutions for rotating fluid system. In this case, there are new members in momentum equation, representing the Coriolis and centrifugal force, which cause problems.
142

Kritéria regularity pro nestacionární nestlačitelné Navier-Stokesovy rovnice / Regularity criteria for instationary incompressible Navier-Stokes equations

Axmann, Šimon January 2012 (has links)
Title: Regularity criteria for instationary incompressible Navier-Stokes equations Author: Šimon Axmann Institute: Mathematical Institute of Charles University Supervisor: doc. Mgr. Milan Pokorný, Ph.D., Mathematical Institute of Charles University Abstract: In the present thesis we study the global conditional regularity of weak solutions to the Cauchy problem for instationary incompressible Navier-Stokes equations in three space dimensions. In the first section, we present an overview of known conditions implying the full regularity of the equations under conside- ration. For the sake of clarity, we expose only the regularity criteria on the scale of Lebesgue spaces, especially in terms of the velocity and its components, the gradient of the velocity and its components, the pressure and the vorticity. In the subsequent sections, we generalize four regularity criteria using two different techniques. We are able to replace one velocity component or its gradient, consi- dered in the known results, by a projection of the velocity into a general vector field. For the purpose of the second method, we also generalize the multiplicative Gagliardo-Nirenberg inequality.
143

Dynamics and microstructure of colloidal complex fluids : a lattice Boltzmann study

Kim, Eunhye January 2009 (has links)
The lattice Boltzmann (LB) method is a versatile way to model complex fluids with hydrodynamic interactions through solving the Navier-Stokes equations. It is well-known that the role of hydrodynamic interactions is ignorable in studying the Boltzmann equilibrium of colloidal (Brownian) particles. However, full hydrodynamic interactions play an important role in their dynamics. In the LB framework for moving colloids, the “bounce-back on links” method is used to calculate the hydrodynamic forces. In this thesis, three kinds of colloidal complex fluids with full hydrodynamic interactions are simulated by lattice Boltzmann methods: colloids in a binary fluid, magnetic colloids in a single fluid and magnetic colloids in a binary fluid. First, we have done extensive simulations of nanoparticles in a binary fluid, following up previous work[1] which predicted formation of a “bijel” (bicontinuous interfacially jammed emulsion gel) in symmetric fluid quenches. Our work in this thesis focuses on the analysis of the dynamics after nanoparticles become arrested on the fluid-fluid interfaces under conditions varying from a symmetric quench to a strongly asymmetric quench. Although these new simulations extend the time window studied by a factor of two, slow domain growth is still observed. Our new analyses address the mechanics of the slow residual dynamics which involves cooperative motion of the nanoparticles at the fluid-fluid interfaces. The second topic is the LB simulation of colloidal ferrofluids to see the effect of full hydrodynamic interactions among magnetic colloids. The main focus is on how the hydrodynamic interaction affects both the equilibrium dynamics of these dipolar systems and also their transient dynamics to form clusters. Numerically, magnetic colloids are implemented with the long-range dipolar interactions described by Ewald summation. To check the effect of full hydrodynamic interactions, Brownian dynamics without any hydrodynamic interaction has been done for comparison: Monte Carlo results are also reported. We confirm that our LB generates the Boltzmann distribution for static equilibrium properties, by comparison with these methods. However, the equilibrium dynamics is altered: hydrodynamic interactions make the structural relaxations slower in both the short-time and the long-time regime. This slow relaxation rate is also found for transient motions. The third topic addresses magnetic colloids in a binary fluid. In contrast with the preceding two systems which correspond directly to laboratory experiments, this last system is so far only predicted by the LB results in this thesis. To explore this hypothetical new material by the LB method, the basic structures are investigated in terms of both domain growth morphology and the arrangement of magnetic colloids. Under conditions varying from a symmetric quench to an asymmetric quench, a chainlike arrangement is observed for dipoles jammed on the surfaces, but the basic morphology of domains is still maintained regardless of the dipolar strength. In addition, applying external field affects the morphology of domains and the stability of domain structures.
144

Immersed-interface methods in the presence of shock waves / Métodos de interface imersa na presença de ondas de choque

Auríchio, Vinícius Henrique 03 May 2019 (has links)
Fluid motion has always been of great importance for humanity since much of our progress has been related to our understanding of fluid dynamics and to our control over the fluids surrounding us. In particular, the experimental techniques and the methods for numerical simulation developed during the last century allowed for great progresses both in creating new technologies and in improving old ones. Despite the great importance of experimental techniques, measuring all properties of a fluid throughout the whole domain, without intefering with the flow to be studied, is impossible. Also, building models even in scale is usually expansive. Both of these reasons have driven the development of numerical methods to the point they became an invaluable tool for fluid dynamic studies and the main tool for developing engineering solutions. If numerical methods are to be of any use, though, they have to correctly describe the problem geometry as well as capture the rich dynamics in a variety of flow situations, such as turbulence, boundary-layers and shock-waves. This thesis addresses two of these problems. In particular, I show modified versions of two immersed-interface methods to describe the geometry, simplifying their implementations with no impact to their applicability. I also introduce two methods for handling shock-waves: first aiming to minimize computational costs, then improving shock-wave resolution without increasing the number of grid points. / O movimento dos fluidos sempre foi de grande importância para a humanidade, dado que muito de nosso progresso esteve intimamente relacionado a um entendimento mais profundo de fluidodinâmica e de como controlar os flúidos ao nosso redor. Em particular, os métodos experimentais e de simulação computacional, desenvolvidos no último século, nos permitiram grandes avanços na criação de novas tecnologias e na otimização das já existentes. Apesar de sua grande importância, as dificuldades de se mensurar todas as propriedades de um flúido em todo o espaço, sem interferir com o comportamento do fluxo, além dos custos de se elaborar experimentos em tamanho real ou em escala, fez com que cada vez mais os métodos numéricos se tornassem uma importante ferramenta no estudo da fluido dinâmica e a principal ferramenta para o desenvolvimento de soluções de engenharia. Porém, para efetivamente substituir experimentos, os métodos numéricos tem que ser capazes de corretamente descrever a geometria do problema, além de capturarem todo tipo de comportamento apresentado pelos flúidos, como turbulência, camada limite e ondas de choque. Esta tese busca contribuir com dois destes desafios. Em particular, mostro versões modificadas de métodos de interface imersa para a descrição da geometria, simplificando as implementações originais sem prejudicar sua aplicabilidade. Também abordo métodos para tratar ondas de choque: primeiro buscando minimizar o esforço computacional e depois buscando aumentar a resolução do choque sem precisar refinar a malha computacional.
145

The weakly nonlinear stability of an oscillatory fluid flow

Reid, Francis John Edward, School of Mathematics, UNSW January 2006 (has links)
A weakly nonlinear stability analysis was conducted for the flow induced in an incompressible, Newtonian, viscous fluid lying between two infinite parallel plates which form a channel. The plates are oscillating synchronously in simple harmonic motion. The disturbed velocity of the flow was written in the form of a series in powers of a parameter which is a measure of the distance away from the linear theory neutral conditions. The individual terms of this series were decomposed using Floquet theory and Fourier series in time. The equations at second order and third order in were derived, and solutions for the Fourier coefficients were found using pseudospectral methods for the spatial variables. Various alternative methods of computation were applied to check the validity of the results obtained. The Landau equation for the amplitude of the disturbance was obtained, and the existence of equilibrium amplitude solutions inferred. The values of the coefficients in the Landau equation were calculated for the nondimensional channel half-widths h for the cases h = 5, 8, 10, 12, 14 and 16. It was found that equilibrium amplitude solutions exist for points in wavenumber Reynolds number space above the smooth portion of the previously determined linear stability neutral curve in all the cases examined. Similarly, Landau coefficients were calculated on a special feature of the neutral curve (called a ???finger???) for the case h = 12. Equilibrium amplitude solutions were found to exist at points inside the finger, and in a particular region outside near the top of the finger. Traces of the x-components of the disturbance velocities have been presented for a range of positions across the channel, together with the size of the equilibrium amplitude at these positions. As well, traces of the x-component of the velocity of the disturbed flow and traces of the velocity of the basic flow have been given for comparison at a particular position in the channel.
146

On existence and uniqueness of weak solutions to the Navier-Stokes equations in R3

Peterson, Samuel H. (Samuel Houston) 08 June 2012 (has links)
This thesis is on the existence and uniqueness of weak solutions to the Navier-Stokes equations in R3 which govern the velocity of incompressible fluid with viscosity ν. The solution is obtained in the space of tempered distributions on R3 given an initial condition and forcing data which are dominated by majorizing kernels. The solution takes the form of an expectation of functionals on a Markov process indexed by a binary branching tree. / Graduation date: 2012
147

An Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains

Le, Duc-Vinh, Khoo, Boo Cheong, Peraire, Jaime 01 1900 (has links)
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity. / Singapore-MIT Alliance (SMA)
148

The Dual Reciprocity Boundary Element Solutions Of Helmholtz-type Equations In Fluid Dynamics

Alsoy-akgun, Nagehan 01 February 2013 (has links) (PDF)
In this thesis, the two-dimensional, unsteady, laminar and incompressible fluid flow problems governed by partial differential equations are solved by using dual reciprocity boundary element method (DRBEM). First, the governing equations are transformed to the inhomogeneous modified Helmholtz equations, and then the fundamental solution of modified Helmholtz equation is used for obtaining boundary element method (BEM) formulation. Thus, all the terms in the equation except the modified Helmholtz operator are considered as inhomogeneity. All the inhomogeneity terms are approximated by using suitable radial basis functions, and corresponding particular solutions are derived by using the annihilator method. Transforming time dependent partial differential equations to the form of inhomogeneous modified Helmholtz equations in DRBEM application enables us to use more information from the original governing equation. These are the main original parts of the thesis. In order to obtain modified Helmholtz equation for the time dependent partial differential equations, the time derivatives are approximated at two time levels by using forward finite difference method. This also eliminates the need of another time integration scheme, and diminishes stability problems. Stream function-vorticity formulations are adopted in physical fluid dynamics problems in DRBEM by using constant elements. First, the procedure is applied to the lid-driven cavity flow and results are obtained for Reynolds number values up to $2000.$ The natural convection flow is solved for Rayleigh numbers between $10^3$ to $10^6$ when the energy equation is added to the Navier-Stokes equations. Then, double diffusive mixed convection flow problem defined in three different physical domains is solved by using the same procedure. Results are obtained for various values of Richardson and Reynolds numbers, and buoyancy ratios. Behind these, DRBEM is used for the solution of natural convection flow under a magnetic field by using two different radial basis functions for both vorticity transport and energy equations. The same problem is also solved with differential quadrature method using the form of Poisson type stream function and modified Helmholtz type vorticity and energy equations. DRBEM and DQM results are obtained for the values of Rayleigh and Hartmann numbers up to $10^6$ and $300,$ respectively, and are compared in terms of accuracy and computational cost. Finally, DRBEM is used for the solution of inverse natural convection flow under a magnetic field using the results of direct problem for the missing boundary conditions.
149

The Dual Reciprocity Boundary Element Solution Of Helmholtz-type Equations In Fluid Dynamics

Alsoy-akgun, Nagehan 01 February 2013 (has links) (PDF)
In this thesis, the two-dimensional, unsteady, laminar and incompressible fluid flow problems governed by partial differential equations are solved by using dual reciprocity boundary element method (DRBEM). First, the governing equations are transformed to the inhomogeneous modified Helmholtz equations, and then the fundamental solution of modified Helmholtz equation is used for obtaining boundary element method (BEM) formulation. Thus, all the terms in the equation except the modified Helmholtz operator are considered as inhomogeneity. All the inhomogeneity terms are approximated by using suitable radial basis functions, and corresponding particular solutions are derived by using the annihilator method. Transforming time dependent partial differential equations to the form of inhomogeneous modified Helmholtz equations in DRBEM application enables us to use more information from the original governing equation. These are the main original parts of the thesis. In order to obtain modified Helmholtz equation for the time dependent partial differential equations, the time derivatives are approximated at two time levels by using forward finite difference method. This also eliminates the need of another time integration scheme, and diminishes stability problems. Stream function-vorticity formulations are adopted in physical fluid dynamics problems in DRBEM by using constant elements. First, the procedure is applied to the lid-driven cavity flow and results are obtained for Reynolds number values up to 2000. The natural convection flow is solved for Rayleigh numbers between 10^3 to 10^6 when the energy equation is added to the Navier-Stokes equations. Then, double diffusive mixed convection flow problem defined in three different physical domains is solved by using the same procedure. Results are obtained for various values of Richardson and Reynolds numbers, and buoyancy ratios. Behind these, DRBEM is used for the solution of natural convection flow under a magnetic field by using two different radial basis functions for both vorticity transport and energy equations. The same problem is also solved with differential quadrature method using the form of Poisson type stream function and modified Helmholtz type vorticity and energy equations. DRBEM and DQM results are obtained for the values of Rayleigh and Hartmann numbers up to 10^6 and 300, respectively, and are compared in terms of accuracy and computational cost. Finally, DRBEM is used for the solution of inverse natural convection flow under a magnetic field using the results of direct problem for the missing boundary conditions.
150

Mathematical modelling of the plunger pump operation with numerical methods for simulating the flow across the valve

Chen, Tian 01 December 2011 (has links)
Plunger pumps are needed for heavy duty sludge pumping at wastewater treatment facilities. America's leading pump manufacturer Wastecorp Inc. brought their plunger pump problem to us in late 2009. It was found that when the ow rate reaches a critical value, the plunger pump starts to generate a clicking noise. A one-dimensional model was built for studying the ow of a typical plunger pump operation. The velocities and pressures are calculated at certain interesting locations. Pressure jumps have been found while opening or closing the valves. The valve motion is then modeled with considerations to its geometry. The results show that as the plunger speed reaches a critical value, the valve moves more rapidly and more likely to hit the wall and generates a noise. We also provide a methodology to study the ow across the valve in higher resolution. A nite-di erence approach to the Navier-Stokes equations are presented with the immersed boundary method. / UOIT

Page generated in 0.0822 seconds