• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 59
  • 13
  • 12
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Scanning near-field infrared microspectroscopy on semiconductor structures

Jacob, Rainer 14 March 2012 (has links) (PDF)
Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots.
22

Terahertz Near-field Investigation of a Plasmonic GaAs Superlens

Fehrenbacher, Markus 26 April 2016 (has links) (PDF)
This work presents the first demonstration of a semiconductor based plasmonic near-field superlens, utilizing highly doped GaAs to generate infrared optical images with a spatial resolution beyond the difraction limit. Being easily transferable to other semiconductor materials, the concept described in this thesis can be exploited to realize spectrally adjustable superlenses in a wide spectral range. The idea of superlensing has been introduced theoretically in 2000, followed by numerous publications including experimental studies. The effect initiated great interest in optics, since in contrast to difraction limited conventional optical microscopy it enables subwavelength resolved imaging by reconstructing the evanescent waves emerging from an object. With techniques like scanning near-field optical microscopy (SNOM) and stimulated emission depletion (STED) being already successfully established to overcome the conventional restrictions, the concept of superlensing provides a novel, different route towards high resolution. Superlensing is a resonant phenomenon, relying either on the excitation of surface plasmons in metallic systems or on phonon resonances in dielectric structures. In this respect a superlens based on doped semiconductor benefits from the potential to be controlled in its operational wavelength by shifting the plasma frequency through adjustment of the free carrier concentration. For a proof of principle demonstration, we investigate a superlens consisting of a highly n-doped GaAs layer (n = 4 x 10^18 cm-3) sandwiched between two intrinsic layers. Recording near-field images of subwavelength sized gold stripes through the trilayer structure by means of SNOM in combination with a free-electron laser, we observe both enhanced signal and improved spatial resolution at radiation wavelengths close to l = 22 µm, which is in excellent agreement with simulations based on the Drude-Lorentz model of free electrons. Here, comparative investigations of a purely intrinsic reference sample confirm that the effect is mediated by the charge carriers within the doped layer. Furthermore, slightly differently doped samples provide indications for the expected spectral shift of the resonance. According to our calculations, the wavelength range to be exploited by n-GaAs based superlenses reaches far into the terahertz region, whereas other semiconductor materials are required to explore the near infrared.
23

Modeling the Optical Response to a Near-Field Probe Tip from a Generalized Multilayer Thin Film

Lawrence, A.J. 05 May 2015 (has links)
The contrast mechanism in Kerr imaging is the apparent angle through which the plane of polarization is rotated upon reflection from a magnetic surface. This can be calculated for a well characterized surface given the polarization state of the incident light. As in traditional optical microscopy, the spatial resolution is limited by diffraction to roughly half the wavelength of the illumination light. The diffraction limit can be circumvented through the use of near-field scanning optical microscopy, in which the illumination source is an evanescent field at the tip of a tapered optical fiber. A novel probe design for near-field optical imaging in reflection mode will be proposed, and experimental work on the development of a near-field Kerr microscope performed up to this point will be presented. The complication in merging these two techniques arises from the complex polarization profile of the evanescent field. This profile can be characterized for a given probe geometry with the use of electromagnetic field modeling software, allowing for subsequent modeling of the polarization profile of the optical response. An algorithm for predicting the optical response to a near-field probe tip from a generalized multilayer thin-film is presented.
24

The Design of a Novel Tip Enhanced Near-field Scanning Probe Microscope for Ultra-High Resolution Optical Imaging

Nowak, Derek Brant 01 January 2010 (has links)
Traditional light microscopy suffers from the diffraction limit, which limits the spatial resolution to λ/2. The current trend in optical microscopy is the development of techniques to bypass the diffraction limit. Resolutions below 40 nm will make it possible to probe biological systems by imaging the interactions between single molecules and cell membranes. These resolutions will allow for the development of improved drug delivery mechanisms by increasing our understanding of how chemical communication within a cell occurs. The materials sciences would also benefit from these high resolutions. Nanomaterials can be analyzed with Raman spectroscopy for molecular and atomic bond information, or with fluorescence response to determine bulk optical properties with tens of nanometer resolution. Near-field optical microscopy is one of the current techniques, which allows for imaging at resolutions beyond the diffraction limit. Using a combination of a shear force microscope (SFM) and an inverted optical microscope, spectroscopic resolutions below 20 nm have been demonstrated. One technique, in particular, has been named tip enhanced near-field optical microscopy (TENOM). The key to this technique is the use of solid metal probes, which are illuminated in the far field by the excitation wavelength of interest. These probes are custom-designed using finite difference time domain (FDTD) modeling techniques, then fabricated with the use of a focused ion beam (FIB) microscope. The measure of the quality of probe design is based directly on the field enhancement obtainable. The greater the field enhancement of the probe, the more the ratio of near-field to far-field background contribution will increase. The elimination of the far-field signal by a decrease of illumination power will provide the best signal-to-noise ratio in the near-field images. Furthermore, a design that facilitates the delocalization of the near-field imaging from the far-field will be beneficial. Developed is a novel microscope design that employs two-photon non-linear excitation to allow the imaging of the fluorescence from almost any visible fluorophore at resolutions below 30 nm without changing filters or excitation wavelength. The ability of the microscope to image samples at atmospheric pressure, room temperature, and in solution makes it a very promising tool for the biological and materials science communities. The microscope demonstrates the ability to image topographical, optical, and electronic state information for single-molecule identification. A single computer, simple custom control circuits, field programmable gate array (FPGA) data acquisition, and a simplified custom optical system controls the microscope are thoroughly outlined and documented. This versatility enables the end user to custom-design experiments from confocal far-field single molecule imaging to high resolution scanning probe microscopy imaging. Presented are the current capabilities of the microscope, most importantly, high-resolution near-field images of J-aggregates with PIC dye. Single molecules of Rhodamine 6G dye and quantum dots imaged in the far-field are presented to demonstrate the sensitivity of the microscope. A comparison is made with the use of a mode-locked 50 fs pulsed laser source verses a continuous wave laser source on single molecules and J-aggregates in the near-field and far-field. Integration of an intensified CCD camera with a high-resolution monochromator allows for spectral information about the sample. The system will be disseminated as an open system design.
25

Shear-Force Acoustic Near-Field Microscopy and Its Implementation in the Study of Confined Mesoscopic Fluids

Brockman, Theodore Alex 16 November 2018 (has links)
The recently developed Shear-Force Acoustic Near-Field Microscope (SANM) is used to investigate the viscoelastic properties of a mesoscopic fluid layer confined between two trapping boundaries, one being a stationary substrate and the other the apex of a laterally oscillating tapered probe. Hardware improvements and evaluation of the SANM-probe robustness will be a major focus of this thesis. The investigation first discusses characterization and recent developments made to the microscope, including: modifications to the sensor head, conditioning of the Nano positioners electrical drive signal, and the assessment of the probe against eventual plastic deformation or compliance against interactions with samples (the latter comprising a solid substrate and its adhered fluid layer which is typically a few monolayers thick). Furthermore, this study includes an analysis of the adsorbed mesoscopic fluid's viscoelastic properties. This inquiry aims to better understand probe-sample interactions with the mesoscopic fluid. This includes adhesion, wetting, and to inquire the nature of the hydrophobic interaction, which is relevant in many areas of study such a protein folding, and interfacial friction which has wide ranging applications including desalination. This analysis will be performed using a Sheer force microscopy (implemented with quartz tuning fork QTF), and another recently introduced technique Whispering Gallery Acoustic Sensor (WGAS). The latter allows more direct monitoring of the QTF's mechanical displacement. These measurements will be supplemented by simultaneously monitoring the acoustic emission from the mesoscopic fluid under confinement between the probe and the substrate, which will be monitored using the SANM sensor positioned beneath the substrate.
26

A study on the complex evanescent focal region of a high numerical aperture objective and its applications

Jia, Baohua, n/a January 2006 (has links)
In recent years, optical near-field has received an ever-increasing attention owing to its ability to localise optical signals beyond the diffraction limit. Optical near-field is a non-propagating field existing in the close vicinity of a matter within a range less than the wavelength of the illumination light and it carries the high spatial frequency information showing the fine details of the matter. An optical near-field can be generated by a near-field optical microscope with a nano-aperture or a metal-coated fibre tip. However, common difficulties associated with this approach, such as a fragile probe, a low throughput and signal-to-noise ratio, and a slow response of gap controlling between the probe and the sample, make it less applicable. Alternatively, optical near-field can be produced by total internal reflection (TIR) occurring at the interface of a prism, which is capable of localising the electromagnetic (EM) field in the close vicinity of the interface. However, in this geometry, no confinement of the field can be achieved in the transverse direction, whereas, in most applications such as optical trapping, micro-fabrication and optical data storage, a transverse confinement of the light field is essential. In order to achieve a transverse confinement of the light field, maintaining the high spatial resolution of the optical near-field, and at the same time eliminating the drawbacks associated with the conventional near-field optical microscope, a novel near-field probe based on a high numerical aperture (NA) TIR objective combined with annular illumination has been developed recently. In this arrangement, an obstruction disk is inserted at the back aperture of the objective to block the light with a convergence angle lower than the critical angle determined by the refractive indices of the two media, resulting in a pure focused evanescent field in the second medium. The evanescent field produced by this method provides a useful tool for studying light-matter interaction at the single molecule level not only because of its high resolution but also due to its inherent merits such as no distance regulation, no heating effect and simple experimental setup. But, the most significant advantage that makes this method unique and superior to the other approaches in terms of producing the optical near-field is that it allows the dynamic control of the focal field by simply modulating the phase or amplitude or even the polarisation state of the incident beam before it enters the objective so that complex illumination beams can be generated, whereas in other fibre probe based approaches this goal is extremely difficult to achieve. To make use of such a novel near-field probe, a thorough theoretical and experimental investigation is required. A complete knowledge of the focused evanescent field is a prerequisite for a wide range of applications including single molecule detection, Raman spectroscopy, near-field non-linear imaging and near-field trapping. Therefore, it is not only necessary but also urgent to exploit the focusing properties of a focused evanescent field under complex field illumination both experimentally and theoretically and this is the major aim of this thesis. The complex fields, which are of particular interest in this thesis, are the radially polarised beam and the Laguerre-Gaussian (LG) beam, because the former owns a more compact circularly symmetric field distribution in the focal region when focused by a high NA objective, while the latter is capable of rotating a trapped particle by transferring the orbital angular momentum. Combining them with the focused evanescent field is potentially able to induce novel functions in the near-field region, which cannot be fulfilled by other near-field approaches. In this thesis, in order to generate these two types of beams, a single liquid crystal spatial light modulator (LCSLM) is employed to produce useful phase modulation to the incident beam. Experimental characterisation of an evanescent focal spot is performed with scanning near-field optical microscopy (SNOM), which is capable of providing the direct mapping of the focused evanescent field not only because of its high spatial resolution and its ability to detect the near-field and far-field signals simultaneously, but also due to the motion of the piezzo-stage enables a three-dimensional characterisation of the evanescent focal spot. In this thesis, a SNOM system with an aluminum coated aperture probe is implemented. The field distributions at both the interface and parallel planes with a small distance away from the interface are obtained. To verify the applicability of SNOM as a characterisation methodology, the field distribution in the focal region of a high NA objective illuminated by a linearly polarised plane wave is measured first. A focus splitting along the direction of incident polarisation is observed threedimensionally near the interface under such a circumstance. It has been demonstrated that the depolarisation effect plays an important role in determining the coupling behaviour of the light into the fibre probe of SNOM. The good match between the experimental results and theoretical predications confirms the validity of SNOM. Theoretical investigation of a tightly focused radially polarised beam is undertaken based on the vectorial-Debye diffraction theory because under the tight focusing of a high NA objective, the vectorial nature of the highly localised field has to be carefully considered in order to represent the field distribution accurately. The calculations on the focusing properties of a radially polarised beam suggest that the longitudinal field component in the focal region plays a dominant role in determining the overall field distribution. Direct measurement of the focused evanescent radially polarised beam in a three-dimensional manner near the interface is performed with SNOM. A highly localised focal spot is achieved in the close vicinity of the coverglass. The measured intensity distributions from SNOM show that correction of the focal spot deformation associated with a linearly polarised beam is achieved by taking advantage of the radially symmetric focal spot of a radially polarised beam. A smaller focal spot is acquired due to the dominant longitudinal polarisation component in the focal region, which possesses a more compact focal intensity distribution than that of the overall field. The experimental results demonstrate a good agreement with the theoretical expectations. The fact that a radially polarised beam is capable of eliminating the focus deformation often presented in the focal region of a high NA objective when a linearly polarised beam is employed can be very useful in many applications, including microfabrication using two-photon photopolymerisation technique. The theoretical study on the two-photon point spread function (PSF) of a radially polarised beam indicates that the focus elongation and splitting associated with a linearly polarised beam are eliminated and the achievable lateral size of the focal spot is approximately a quarter of the illumination wavelength, which is less than half of that under the illumination of a linearly polarised beam. A further reductiont of the lateral size can be expected by using annular radial beam illumination. The investigation on the focusing properties of LG beams has also been one of the major tasks of this thesis. Theoretical investigations of a focused evanescent LG beam suggest that the phase shift induced by the boundary effect when a light beam passes the interface satisfying TIR condition plays a vital role in determining the overall shape of the total field distribution. A severe focal intensity deformation is predicted theoretically in the case of focused evanescent LG beam illumination, which might involve new physical phenomena when applied in the near-field trapping. Such a focal intensity deformation is evidenced experimentally by the direct mapping result obtained from the SNOM probe. A quantitative cross-section comparison with the theoretical predication is conducted, which demonstrates a good agreement. To achieve a controllable optical trap and rotation in the near-field region, complex optical fields such as LG beams carrying orbital angular momentum, have been induced for the manipulation of a polystyrene particle. The influence of the focal intensity deformation on a near-field trapping has been thoroughly investigated. Rotation motion of the particle is examined by mapping the two-dimensional (2D) transverse trapping efficiency of the particle. Theoretical investigation reveals that a significant tangential force component is generated on the particle when it is illuminated by a focused evanescent LG beam. Such findings may prove useful in introducing a rotation mechanism in near-field trapping. The research investigations and methodologies described in this thesis provide a new approach to characterise the near-field focal spot under complex field illumination. It enhances the understanding of the novel near-field probe, thus opening the pathway for numerous near-field applications including optical trapping, two-photon excitation (photopolymerisation) and spectroscopy. The focal field rotation phenomena demonstrated in this thesis may prove particularly beneficial in introducing a rotation mechanism in near-field trapping using a focused evanescent field.
27

Development of near-field scanning optical microscopy for studies of heterogeneity in organic thin films

Kwak, Eun-soo 09 June 2011 (has links)
Not available / text
28

Nano-focusing of light electromagnetic analysis and simulation /

Čajko, František. January 2009 (has links)
Dissertation (Ph. D.)--University of Akron, Dept. of Electrical and Computer Engineering, 2009. / "August, 2009." Title from electronic dissertation title page (viewed 9/23/2009) Advisor, Igor Tsukerman; Committee members, Nathan Ida, Iqbal Husain, Ernian Pan; Department Chair, Alex De Abreu Garcia, Dmitry Golovaty; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
29

The effect of nonlinear propagation on near-field acoustical holography /

Shepherd, Micah Raymond, January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Physics and Astronomy, 2007. / Includes bibliographical references (p. 99-106).
30

A low cost planar near-field / far-field antenna measurement system /

Yan, Bing, January 1997 (has links)
Thesis (M. Eng.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 74-76.

Page generated in 0.0876 seconds