Spelling suggestions: "subject:"nebulizer"" "subject:"nebulizers""
11 |
noneHong, Sheng-Peng 27 June 2002 (has links)
none
|
12 |
Inhalation Exposure and Respiratory Protection of Home Healthcare Workers Administering Aerosolized Medications (Simulation Study)Ollier, Katherine J. 25 October 2018 (has links)
No description available.
|
13 |
The Recovery and Transfer of Aerosolized Listeria InnocuaWaldron, Calvin Michael 15 September 2017 (has links)
Airborne pathogenic bacteria can present a significant public health risk. Pathogenic Listeria monocytogenes can colonize numerous surfaces as well, through direct and indirect cross contamination. The physical environment can also affect the transmission and viability of Listeria (distance from the source, temperature, humidity, air flow). The purpose of this work was to explore the ability of Listeria innocua (a surrogate for L. monocytogenes) to contaminate a surface after it has become aerosolized in a bioaerosol chamber and a walk-in cooler.
L. innocua was nebulized into a 154 L biosafety chamber (~5 log CFU in 1 mL) at two relative humidity (RH) levels (83% and 65%). Oxford Listeria agar plates, stainless steel coupons and polyethylene (HDPE) coupons in the chamber were exposed to the aerosolized bacteria for 5, 10, 20 or 40 minutes. Also, at these times, air samples (100 L) were collected on to gelatin filters which were transferred to Oxford agar plates. In the second part of the research, L. innocua was nebulized into an 11 m3 walk-in cooler where RH ranged from ~29-37%. Aerosolized bacteria were collected on to Oxford agar plates for 10 min intervals and with 50 or 100 L air samples.
Recovery of L. innocua from steel, plastic and agar was significantly higher at 83% RH (2.7 cells/cm2) compared to 65% RH (0.45 cells/cm2). Mean cell recovery from air samples (gelatin filters) was significantly higher (p<0.05) when collected 5 or 10 minutes after nebulization at 83% humidity (mean 2.2 CFU/L) compared to collection after 20 or 40 minutes or compared to all times under 65% humidity (mean 0.4 CFU/L). Recovery from HDPE coupons (1.21 CFU/cm2) was 2.5 X recovery from Oxford agar (0.49 CFU/cm2). In the walk-in cooler, total estimated mean recovery from Oxford media at 10 min after nebulizing was 0.48%, but only 0.04% for samples collected after 60 minutes. The recovery of L. innocua from air samples after 60 min was one-fourth of the number recovered 5 min after nebulizing. No significant difference in recovery was found between plates at different distances (2 – 2.5 m) from the nebulizer in the walk-in cooler. Understanding the survival of aerosolized Listeria and how it can colonize over time on a food contact surface will enhance our efforts to prevent transmission on a small and large scale. The food industry will be able to implement better safety measures to prevent contamination by Listeria species. / Ph. D. / Airborne pathogenic bacteria, including Listeria monocytogenes, can present a significant public health risk. Pathogenic bacteria can colonize numerous surfaces as well through direct and indirect cross contamination. The physical environment can also affect the transmission and viability of Listeria (distance from the source, temperature, humidity). The purpose of this work was to explore the ability of Listeria innocua to contaminate a surface after it has become aerosolized in a bioaerosol chamber and a walk-in cooler. Environmental factors of distance from the source, temperature, and relative humidity were explored.
L. innocua was nebulized into a 154 L biosafety chamber (~5 log CFU in 1 ml) at two relative humidity (RH) levels (83% and 65%). Oxford Listeria agar plates, stainless steel coupons and polyethylene (HDPE) coupons in the chamber were exposed to the aerosolized bacteria for 5, 10, 20 or 40 minutes. Also, at these times, air samples (100 L) were collected on to gelatin filters which were transferred to Oxford agar plates. In the second part of the research, L. innocua was nebulized into an 11 m³ walk-in cooler where RH ranged from ~29-37%. Aerosolized bacteria were collected with 50 or 100 L air samples. And, Oxford media was placed on the cooler floor in layers (attached to poster boards) at various locations for surface analysis.
The three surface samples yielded a greater mean recovery of 2.7 cells/cm² at 83% humidity compared to 0.45 cells/cm² at 65% humidity. Mean cell recovery from air samples (gelatin filters) was significantly higher (p<0.05) when collected 5 or 10 minutes after nebulization at 83% humidity (mean 2.2 CFU/L) compared to collection after 20 or 40 minutes or compared to all times under 65% humidity (mean 0.4 CFU/L). Recovery from HDPE coupons (1.21 CFU/cm² ) was 2.5 X recovery from Oxford agar (0.49 CFU/cm² ). In the walk-in cooler, total estimated mean recovery from the Oxford media at 10 min after nebulizing the Listeria innocua was 0.48%, but only 0.04% for samples collected after 60 minutes. The recovery of L. innocua from air samples after 60 min was one-fourth of the number recovered 5 min after nebulizing. Understanding the survival of aerosolized Listeria and how it can colonize over time on a food contact surface will enhance our efforts to prevent transmission on a small and large scale. The food industry will be able to implement better safety measures to prevent contamination by Listeria species.
|
14 |
Design of a Real-Time Scanning Electrical Mobility Spectrometer and its Application in Study of Nanoparticle Aerosol GenerationSingh, Gagan 2010 May 1900 (has links)
A real-time, mobile Scanning Electrical Mobility Spectrometer (SEMS) was designed using a Condensation Particle Counter (CPC) and Differential Mobility Analyzer (DMA) to measure the size distribution of nanoparticles. The SEMS was calibrated using monodisperse Polystyrene Latex (PSL) particles, and was then applied to study the size distribution of TiO2 nanoparticle aerosols generated by spray drying water suspensions of the nanoparticles. The nanoparticle aerosol size distribution, the effect of surfactant, and the effect of residual solvent droplets were determined.
The SEMS system was designed by integrating the Electrical System, the Fluid Flow System, and the SEMS Software. It was calibrated using aerosolized Polystyrene Latex (PSL) spheres with nominal diameters of 99 nm and 204 nm. TiO2 nanoparticle aerosols were generated by atomizing water suspensions of TiO2 nanoparticles using a Collison nebulizer. Size distribution of the TiO2 aerosol was measured by the SEMS, as well as by TEM. Furthermore, the effect of surfactant, Tween 20 at four different concentrations between 0.01mM and 0.80mM, and stability of aerosol concentration with time were studied. It was hypothesized that residual particles in DI water observed during the calibration process were a mixture of impurities in water and unevaporated droplets. Solid impurities were captured on TEM grids using a point-to-plane Electrostatic Precipitator (ESP) and analyzed by Energy Dispersive Spectroscopy (EDS) while the contribution of unevaporated liquid droplets to residual particles was confirmed by size distribution measurements of aerosolized DI water in different humidity conditions. The calibration indicated that the mode diameter was found to be at 92.5nm by TEM and 95.8nm by the SEMS for 99nm nominal diameter particles, a difference of 3.6%. Similarly, the mode diameter for 204nm nominal diameter particles was found to be 194.9nm by TEM and 191nm by SEMS, a difference of 2.0%. Measurements by SEMS for TiO2 aerosol generated by Collison nebulizer indicated the mode diameters of 3mM, 6mM, and 9mM concentrations of TiO2 suspension to be 197.5nm, 200.0nm and 195.2nm respectively. On the other hand, the mode diameter was found to be approximately 95nm from TEM analysis of TiO2 powder. Additionally, concentration of particles generated decreased with time. Dynamic Light Scattering (DLS) measurements indicated agglomeration of particles in the suspension. Furthermore, the emulation of single particle distribution was not possible even after using Tween 20 in concentrations between 0.01mM and 0.80mM. From the study of residual particles in DI water, it was found that residual particles observed during the aerosolization of suspensions of DI water were composed of impurities present in DI water and unevaporated droplets of DI water. Although it was possible to observe solid residual particles on the TEM grid, EDS was not able to determine the chemical composition of these particles.
|
15 |
Fabrication of Integrated Nebulizer Nozzle Plate Utlizing Micro-molding for FD- ESI Mass SpectrometryChang, Chien-chung 01 July 2005 (has links)
This study presents a novel concept to integrated nebulizer nozzle plate for FD-ESI (Fused-droplet Electrospary Ionization Mass Spectrometry) using modified LIGA process. This fabrication technique can reduce the production cost of current nozzle plate. It comprises of multi-exposure and single develop (MESD) process, the extra-hard Ni-Co (Nickel-Cobalt) electroforming and thin-wall plastic microinjection molding. The template of nozzle plate is patterned using dry film and MESD process. Later, the template is transferred into metal Ni-Co mold by electroplating. In this study, the technique of extra-hard Ni-Co alloy electroplating process with Hardness of Vickers over (HV) 550 is developed. Then with the stiffness of Ni-Co mold, it can withstand high injection speed. Thin-wall microinjection molding process with short cycle time to fabricate nozzle plate can be finished. Liquid crystal polymer (LCP) is used for thin-wall microinjection molding process. In order to make efficiently atomization, we used ANSYS to optimize PZT actuator. Besides, the work of nebulizer with FD-ESI was demonstrated in this study. a novel design of nozzle plate.
|
16 |
Application and Development of Fused-Droplet Electrospray Mass SpectrometryChang, Der-Yeou 29 June 2000 (has links)
none
|
17 |
Characterization of an Electrospray with Co-flowing GasSultan, Farhan 17 July 2013 (has links)
In mass spectrometry an electrospray is commonly used as an ion source. At high sample flow rates a sheath co-flow of gas around the electrospray emitter is employed. The co-flow of gas reduces contamination and increases signal sensitivity in the mass spectrometer’s results. This work characterizes the operation of an electrospray with co-flowing air for various operating conditions. It is found that a co-flowing air has a negligible effect on droplet size for the spindle and cone jet modes while it only reduces the droplet size marginally in the unstable mode. In the high flow rate unstable mode, the addition of air seems to have no real effect on droplet size. In summary, the electrospray with co-flowing air produces a denser and more focused spray with similar droplet size and distribution than that of the un-nebulized spray. This explains why using co-flowing air in mass spectrometry applications improves the signal quality, since it allows for the focusing of droplets produced into the inlet and also aids in the breakup of larger droplets.
|
18 |
Characterization of an Electrospray with Co-flowing GasSultan, Farhan 17 July 2013 (has links)
In mass spectrometry an electrospray is commonly used as an ion source. At high sample flow rates a sheath co-flow of gas around the electrospray emitter is employed. The co-flow of gas reduces contamination and increases signal sensitivity in the mass spectrometer’s results. This work characterizes the operation of an electrospray with co-flowing air for various operating conditions. It is found that a co-flowing air has a negligible effect on droplet size for the spindle and cone jet modes while it only reduces the droplet size marginally in the unstable mode. In the high flow rate unstable mode, the addition of air seems to have no real effect on droplet size. In summary, the electrospray with co-flowing air produces a denser and more focused spray with similar droplet size and distribution than that of the un-nebulized spray. This explains why using co-flowing air in mass spectrometry applications improves the signal quality, since it allows for the focusing of droplets produced into the inlet and also aids in the breakup of larger droplets.
|
19 |
Assessment of recent nebulizer delivery systems using urinary pharmacokinetics method and aerodynamic characteristics of TOBI® nebulized dose following inhalationMashat, M., Clark, Brian J., Assi, Khaled H., Chrystyn, Henry 2017 April 1917 (has links)
Yes / Background
Chronic infections with Pseudomonas aeruginosa are a leading cause of morbidity in patients with cystic fibrosis (CF). Tobramycin nebulizer solution (TNS) is indicated for maintenance therapy in CF patients. TOBI® is a tobramycin nebulizer solution (TNS) approved by FDA for maintenance therapy for patient with CF. Adherence to recommended therapy in CF has always been a challenge and new generation nebulizers are increasingly used “off label” to reduce the time required for inhalation, potentially improving patient compliance.
Objectives
To assess the performance of selected recent nebulizer delivery systems for determination the optimum combinations to deliver TOBI®. Using the relative lung bioavailability of TOBI® to the lungs in healthy volunteers, following inhalation from selected nebulizer delivery systems, using a urinary pharmacokinetics method. In vitro aerodynamic characteristics of the nebulized dose were also determined.
Methods
Serial urine samples were collected from 12 healthy volunteers up to 24 h post-inhalation of TOBI® inhaled solution following delivery by Pari LC Plus®, Sidestream®, NE-U22-E Omron® and Aeroneb® Go nebulizers. In vitro aerodynamic characteristics of the nebulized dose were also determined according to the CEN (Committee European de Normalization) method.
Results
The mean (SD) relative lung bioavailability from Pari LC Plus®, Sidestream®, Omron®, and Aeroneb® Go nebulizers was 4.9 (0.5), 3.9 (0.5), 7.1 (1.3), and 7.7 (0.7) %, respectively. The mean (SD) mass median aerodynamic diameter (MMAD) of the drug particles from the same systems was 2 (0.2), 2 (0.2), 1.2 (0.03) and 2.0 (0.1) μm, and the corresponding fine particle doses (FPD) were 2.2 (0.23), 1.5 (0.2), 3.44 (0.3) and 2.8 (0.3) mg.
Conclusion
The data obtained from in-vitro and in-vivo studies reflect poor relative lung bioavailability of tobramycin following jet nebulization.
|
20 |
Novas técnicas de introdução de amostras para espectrometria atômica : nebulização eletrônica e geração fotoquímica de vapores /Gianeti, Thiago Marcelo Ribeiro. January 2019 (has links)
Orientador: Gustavo Rocha de Castro / Banca: Maria del Pilar Taboada Sotomayor / Banca: Pedro de Magalhaes Padilha / Banca: Rafael Arromba de Sousa / Banca: José Augusto da Col / Resumo: A demanda por novos sistemas de nebulização e/ou introdução de amostras mais flexíveis e, preferencialmente, de baixo fluxo com aproveitamento total da solução em espectrometria atômica surge em decorrência da necessidade de desenvolvimento de novas interfaces para a hifenação com técnicas cromatográficas, a qual está sendo empregada em estudos de especiação química em que se tem pouca disponibilidade de amostras e necessidade de incremento da sensibilidade. Além disso, existe a possibilidade de criação de novas configurações de instrumentos portáteis, redução de custos e menor geração de descartes e efluentes. Neste contexto, foram estudados dois novos sistemas de introdução de amostras: nebulização eletrônica por malha oscilante e a geração fotoquímica de vapores. Nebulizadores de malha oscilante são dispositivos eletrônicos de geração de aerossol desenvolvidos para administração de fármacos específicos para doentes de fibrose cística dos pulmões. Trata-se de um dispositivo portátil, silencioso, sem a necessidade de gás para a geração do aerossol, produzindo um aerossol formado por gotículas de distribuição uniforme (monomodal) com tamanho de partículas de 3 µm. Não há relatos na literatura que, empregando estes sistemas em espectrometria atômica, haveria um grande potencial de abertura de um novo campo de estudos. Verificou-se que nebulizadores eletrônicos permitem que sejam promovidas determinações multielementares empregando apenas 100µL de solução da amostra com grande ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The need for new systems for nebulization and / or introduction of more flexible and preferably low flow samples with full use of the solution in atomic spectrometry arises through the need to develop new interfaces for the hyphenation with chromatographic techniques, which is being used in studies of chemical speciation in which there is little availability of samples and need for increased sensitivity. In addition, there is the possibility of creating new configurations of portable instruments, reducing costs and less generation of discards and effluents. In this context, two new systems of sample introduction were studied: electronic nebulization by vibrating mesh membrane and the photochemical generation of vapors. Vibrating mesh membrane nebulizers are electronic aerosol generation devices developed for administration of specific drugs to cystic fibrosis patients of the lungs. It is a portable, quiet device without the need for gas to generate the aerosol, producing an aerosol formed by uniformly distributed (monomodal) droplets with a particle size of 3 μm. There are no reports in the literature that, employing these systems in atomic spectrometry, there would be great potential for opening up a new field of study. It was verified that electronic nebulizers allow multielement determinations to be promoted employing only 100μL of sample solution with great increase of sensitivity, being able to vary between 10 until 200 times, depending on the element and wavelength. The... (Complete abstract click electronic access below) / Doutor
|
Page generated in 1.3347 seconds