Spelling suggestions: "subject:"degative amissions 1echnology"" "subject:"degative amissions 1technology""
1 |
Carbon Stability of Biochar : Methods for assessment and indication / Kolstabilitet i biokol : Metoder för värdering och indicationSöderqvist, Helena January 2019 (has links)
Biochar can reduce the amount of CO2 in the atmosphere and is acknowledged as one feasible technology for negative carbon emissions. The stability of carbon in biochar is of major importance for the carbon sequestration value. A method for confident estimation of the stability is needed to make efficient priorities for the climate. The aim of this study is to identify the best available method that can be used to indicate the stability and quantify the carbon sequestration potential of biochar. The result builds on a literature review of the current state of scientific knowledge and the proposed method is tested with data from previous studies and then applied to the case of Stockholm Exergi. Biochar has a stable carbon structure, always more recalcitrant than the biomass that it derives from. However, estimations of how stable the carbon are varying a lot in the literature. Biochar is not unambiguously defined, there is rather a range of materials with different stability and the degradationis context dependent. Further discrepancy in the estimated stability derives from different experimental design and approaches to modeling the data. There is a challenge to do a proper estimation of the actual degradation, due to the long time perspective and the complexity of observation of behavior in a naturalsystem. A functional method to indicate the stability of carbon in biochar is needed because a biochar producer cannot conduct a long term trial to prove the carbon sequestration potential. Several methods have in theory the ability to indicate stability. However, the H/Corg model with the expression BC+100 emerging to be the best suited method due to its connection to measured degradation, accessibility and acceptance. The H/Corg model could be further improved by calibration and validation by collecting existing data from previous assessments. Communication of the carbon sequestration after hundred years compared to other carbon sinks should be improved to better reflect the long term carbon sequestration value of biochar. Stockholm Exergi is planning for a biochar production of 5 000 ton/year. The H/Corg method estimate that this corresponds to 9 000 – 11 500 ton CO2 per year, stable for at least hundred years. The widerange in the result derives from the different interpretations on the H/Corg method, where the different interpretations derive from the variation that previous research result shows. This is an incentive to support further development of the method. The sequestered carbon in biochar must be protected in its application to ensure the carbon sink in a trade system. Biochar in soil, green areas and concrete face the risk of being dis/re-located. However, that is not a threat to the carbon sequestration value. Biochar and biochar in a soil product sold in bags cannot account for the biochar sequestration value detached from the product, because of the risk of incineration. The future development of biochar stability assessment should in a short term assemble the existing knowledge of conducted trials and use that with knowledge of what approaches that best corresponds to the real stability of biochar. This could decrease the observed variations in the stability assessments and be used to calibrate and validate methods that could indicate stability. In the long perspective field trials and incubation trials should be done in a standardized way to assess the degradation, designed according to best practice with long trial times and consciously extrapolated data. / Biokol kan minska halten av CO2 i atmosfären och är identifierad som en möjlig teknologi för negativa CO2 utsläpp. Biokolets stabilitet har stor betydelse för dess potential. Målet med denna studie är att identifiera den bästa tillgängliga metoden för att indikera kolets stabilitet. Resultatet bygger på en litteraturgenomgång av befintligt kunskapsläge. Den föreslagna metoden testas med biokolsdata ifrån tidigare gjorda mätningar. Kolinbindningspotentialen i Stockholm Exergi’s biokolsprojekt beräknas genom att applicera metoden på förväntad biokolsproduktion. Biokol har en stabil kolstruktur, alltid mer stabil än den biomassa den härstammar ifrån. Uppskattningar av hur stabilt biokol är varierar mycket i litteraturen. Biokol är inte entydigt definierat utan är ett spann av olika material och dessutom är stabiliteten kontext beroende. Ytterligare variationer härstammar ifrån varierande experimentdesign och olika metoder som används för extrapolation av mätdata. För att beräkna kolinbindning i biokol som produceras behövs en metod som kan visa hur stabilt kolet är.Mätmetoden är resurskrävande och därför behövs istället ett samband mellan kolets innehåll/struktur och uppvisad stabilitet som kan användas i kombination med en enklare analys av det producerade biokolet för att indikera stabilitet. I teorin finns det många metoder som kan vara funktionella men enligt denna studie är H/Corg metoden i kombination med BC+100 index mest lämpligt att använda pågrund av metodens uppvisade koppling till uppmätt stabilitet, tillgänglighet och acceptans. Stockholm Exergi planerar för en biokolsproduktion på 5000 ton/år och H/Corg metoden uppskattar att detta årligen motsvarar 9 000 – 11 500 ton CO2 stabilt i minst 100 år. Spannet som resultatet uppvisar beror av den variation av uppskattad stabilitet i litteraturen och är ett incitament för att stödja en vidareutveckling av metoden. I applikationen av biokol måste kolsänkan skyddas för att kunna ingå i ett handelssystem. För biokol till jordförbättring, grönområden i staden samt biokol i betong föreligger en möjlighet att biokolet blir omflyttat eller förloras ifrån den ursprungliga applikationen, detta medför dock inte att kolsänkan går förlorad och är därför inte ett problem för värdet av kolsänkan. Däremot bör värdet av kolsänkan av biokol som säljs i konsumentförpackningar inte frikopplas ifrån biokolsprodukten eftersom det då saknas kontroll över att kolet inte bränns. Vidare studier av stabilitet av biokol bör på kort sikt innefatta insamling av befintlig data ifrån genomförda försök. Genom kunskap om hur olika faktorer inverkar på verklig och uppskattad stabilitet kan spannet av variation bättre accepteras och minska. Vidare kan insamlad data användas för att kalibrera och validera indikationsmetoder. Kommunikationen av kolsänkan av biokol och det långsiktiga värde som skiljer biokol ifrån andra mer kortsiktiga kolsänkor bör förbättras. Långsiktiga fält och inkubationsförsök bör etableras enligt kunskap om experimentell design och hantering av data för att på ett så korrekt sätt som möjligt spegla verklig stabilitet och kolsänka.
|
2 |
Koldioxidlagring i Sverige : En studie om CCS, Bio-CCS, DACCS och biokol ur ett 2045-perspektiv / Carbon Storage in Sweden : A study on CCS, BECCS, DACCS and biochar from a 2045 perspectiveBojö, Erik, Edberg, Vincent January 2021 (has links)
Sverige har som ambition att uppnå nettonollutsläpp av fossilt CO2 till år 2045. För att lyckas med detta ska landet minska sina utsläpp med 85%, samtidigt som så kallade kompletterande åtgärder kommer vidtas för att kompensera för resterande 15%. Denna studie utreder Sveriges arbete med negativa utsläpp som kompletterande åtgärd med fokus på teknikerna bio-energy for carbon capture and storage (Bio-CCS på svenska), Direct air capture for carbon capture and storage (DACCS) och biokol. Även carbon capture and storage (CCS), som kan bidra till att göra anläggningar CO2-neutrala, har studerats. Under arbetets gång har en litteraturstudie samt intervjuer med forskare, politiker, bransch- och företagsrepresentanter samt myndigheter genomförts. För CCS och Bio-CCS, som innefattar avskiljning av CO2 från punktutsläpp, finns fyra olika avskiljningsstrategier som kallas post-, pre-, och oxyfuel combustion samt chemical looping. I fallet med DACCS tillämpas antingen absorption eller adsorption för att avskilja koldioxiden från atmosfären. Biokol produceras genom förbränning av biomassa i en pyrolysanläggning och kan sedan användas som jordförbättringsmedel och kolsänka. Det finns idag en inhemsk biokolsproduktion på kommersiell skala vilket gör att biokol skiljer sig från de övriga tre teknikerna som inte kommit lika långt i sin utveckling. Däremot finns det ett flertal pilotprojekt inom CCS och Bio-CCS i Sverige. Sveriges väletablerade bioekonomi gör att det finns goda förutsättningar för biokol och Bio- CCS att bidra till negativa utsläpp ur ett 2045-perspektiv. DACCS anses däremot inte aktuellt som kompletterande åtgärd till år 2045. Efter intervjuer framgår att det råder en god samstämmighet mellan olika aktörer kring vilka faktorer som behöver behandlas för att implementera teknikerna. Gemensamt för alla tekniker är att det krävs ekonomiska incitament för att möjliggöra storskalig implementering. För CCS-teknikerna krävs även regulatoriska förändringar för att underlätta transporten av CO2. / Sweden's ambition is to achieve net zero emissions of fossil CO2 by the year 2045. To reach this target, Sweden aims to reduce its emissions by 85%, while so-called supplementary measures will be taken to compensate for the remaining 15%. This study investigates Sweden's work with negative emissions as a complementary measure with a focus on the technologies bio-energy for carbon capture and storage (Bio-CCS in Swedish), Direct air capture for carbon capture and storage (DACCS) and biochar. Carbon capture and storage (CCS), which can help make industrial plants CO2-neutral, has also been studied. During the project, a literature study and interviews with researchers, politicians, industry and company representatives as well as authorities were carried out, which formed the basis of the report. For CCS and Bio-CCS, which include separation of CO2 from point source emissions, there are four different separation strategies called post-, pre-, and oxyfuel combustion as well as chemical looping. Among these, post combustion is highlighted as the most developed. In the case of DACCS, either absorption or adsorption is applied to separate CO2 from the atmosphere. CCS, Bio-CCS and DACCS all have in common that the captured CO2 must be stored in deep geological formations once it has been separated. Biochar is produced by heating biomass in a pyrolysis plant and can be used as a soil improver and carbon sink. Today Sweden has a domestic biochar production on a commercial scale, which means that biochar differs from the other three technologies that have yet to reach that stage of development. However, there are several pilot projects within Bio-CCS and CCS in Sweden. Sweden's well-established bioeconomy means that the conditions are good for biochar and Bio-CCS to contribute to negative emissions in relation to the 2045 target. DACCS, on the other hand, is not considered relevant as a supplementary measure to the year 2045 due to its technical immaturity and high cost. From interviews with researchers, authorities, companies, industry organizations and politicians, it is clear that there is a consensus between the different actors on which factors need to be addressed in order to enable large-scale implementation of the technologies. Common to all technologies is that financial incentives are required to enable large-scale implementation. The CCS technologies also require regulatory changes to facilitate the transport of CO2.
|
Page generated in 0.2295 seconds