• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 11
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Liquid Crystal Microswimmers - from single entities to collective dynamics

Krüger, Carsten 02 November 2016 (has links)
No description available.
12

Toroidal droplets: instabilities, stabilizing and nematic order

Pairam, Ekapop 22 May 2014 (has links)
The goal of this thesis is to study the ground or metastable state structure of nematic liquid crystal systems confined inside handled shapes such as a torus or double torus. We begin our work by introducing a new method to generate a toroidal droplet from a Newtonian liquid inside another, immiscible, Newtonian liquid. In this situation, a toroidal droplet is unstable and follows one of two routes in transforming into a spherical droplet: (i) its tube breaks in a way reminiscent to the breakup of a cylindrical jet, or (ii) its tube grows until it finally coalesces onto itself. However, to be able to probe the nematic structure, we need to address the issue of instabilities. This is done by replacing the outer liquid with a yield stress material, which ultimately leads to the stabilization of the toroidal droplet. Through the experimental investigation, we are able to establish the stabilization conditions. Finally, we generate and stabilize toroidal droplets with a nematic liquid crystal as the inner liquid and a yield stress material as the outer medium. Here we observe that in the ground state, the nematic liquid crystal exhibits an intriguing twisted structure irrespective of the aspect ratio of the torus. While there are no defects observed in a toroidal droplet case, two defects with -1 topological charge each emerge each time we increase the number of handles.
13

Statistical mechanics of colloids and active matter in and out of equilibrium

Balin, Andrew January 2017 (has links)
Thermal and viscous forces compete for dominance at the microscopic length-scales which govern the behaviour of many soft or biological systems. We study three systems of increasing complexity with the central goal of understanding the statistical or hydrodynamic nature of their mechanics. First we study experiments that have been conducted on ferromagnetic colloidal rods. At equilibrium, the magnetically pinned rod is observed to randomly flip between two orientational states, which our theoretical analysis shows is due to a competition between entropic and Hamiltonian forces. We show analytically how entropic forces can arise by considering the coupling between observed and unobserved variables of a system. Experiments in which a rod is driven out of equilibrium by a rotating field display three phases of steady-state behaviour as a function of driving frequency. Using Brownian dynamics simulations we match the lower critical frequency to the experimentally obtained values, showing that thermal fluctuations play an important role in this regime and propose a simple argument to demonstrate that hydrodynamic interactions between the substrate and rod affect the upper critical frequency. We then turn to the biophysical topic of cell locomotion in viscoelastic media. In order to study how bacterial flagella interact with similarly-sized polymers in their environment, we construct a Stokesian dynamics model of a helical filament and bead--spring polymer. Simulating their interaction first for a pinned--rotating helix, then for a swimming helix, we demonstrate that large polymers become hydrodynamically entrained by the flagellum and coil around it, causing both pinned and swimming flagella to expend more work. For the swimming helix, this results in a reduction of swimming speed on average. Finally, we consider an active nematic fluid confined to a channel and show that the inclusion of a passive colloid induces a global state of coherent flow maintained by the intrinsic activity of the system. This flow is persistent, and transports the colloid with it along the channel. By this mechanism, a passive colloid is able to spontaneously induce its own transport through an otherwise quiescent fluid.
14

Optical properties of bent-core nematic liquid crystals

Addis, James January 2014 (has links)
Much of the interest in bent-core compounds in the last few years has centred aroundtheir potential to form nematic liquid crystal phases, which may be both biaxial andpolar. These properties offer possibilities for nematic ferroelectric switching andnonlinear optics applications. In this work, two optical properties, the refractive indices and the second ordernonlinear optical response, were investigated in the high temperature (> 170 °C)nematic phase of a series of bent-core oxadiazole compounds, of varying chain typeand length. An experimental technique, based on the acquisition and analysis of reflectionspectra from liquid crystal cells, and capable of operating at the high temperaturesrequired, was used for the measurement of refractive indices. The extraordinaryrefractive index was found to range from 1.70 to 1.78 over the nematic phase of thebent-core compounds. The ordinary refractive index varied from 1.58 to 1.62. Bothranges of values are higher than is typically observed for rod-like liquid crystals. Thebirefringence took values from ~ 0.10, in the high temperature nematic phase, to~ 0.18, close to the underlying smectic phase. A new experiment was designed, constructed and tested for the second harmonic(SH) measurements. The dependences of the SH on temperature and on scatteringangle are well explained by the theory of SH generation by the flexoelectricpolarisation induced by thermal fluctuations of the director in the nematic phase. Themaximum conversion efficiency was measured to be very low, ~ 1/10000 of apercent. No evidence for the formation of macroscopic biaxial nematic phases was found byeither the refractive indices or SH experiments. However, for the compounds havinglong nematic phases of > 50 °C, different regimes of behaviour in the uniaxialnematic phase were revealed by the SH experiments. This atypical behaviour isconsistent with other reports on these compounds. This study cannot confirm the existence of nanoscale cybotactic clusters in thenematic phases of the bent-core compounds examined but neither is it inconsistentwith them.
15

Electroconvection and Pattern Formation in Nematic Liquid Crystals

Acharya, Gyanu R. 15 April 2009 (has links)
No description available.
16

Comportement de colloïdes piégés aux interfaces de nématiques. / Behavior of colloids at nematic interfaces.

Gharbi, Mohamed Amine 25 October 2011 (has links)
Ce travail expérimental porte sur l'étude du comportement colloïdale aux interfaces de nématiques. Dans un premier temps, nous détaillons la séquence de phase observée par des billes de silice à ancrage homéotrope fort piégés à l'interface air-nématique. En fonction de leur densité ainsi que l'épaisseur du film, les colloïdes forment différentes structures spontanément. A l'aide des pinces optiques, nous mesurons le potentiel de paire et nous discutons les rôles respectifs des forces capillaires et élastiques. Dans un second temps, nous étudions le comportement des colloïdes sur des interfaces nématiquesplus complexes. En contrôlant la géométrie des interfaces et la densité des particules piégées, à l'aide de la technique de microfluidique, nous étudions le comportement colloïdal à la surface des coques nématiques fines. La compétition entre les conditions d'ancrage aux interfaces, l'élasticité du CL, les défauts et les densités des fluides est à l'origine de la formation de nouvelles configurations topologiques. Dans cette partie, nous discutons le rôle des colloïdes dans la formation de ces structures. / The aim of this experimental work is to study the behavior of colloids at nematicinterfaces. Initially, we examine the behavior of spherical solid particles with stronghomeotropic anchoring at an air-nematic interface and we detail the phase behaviorof beads. Depending on their area density, the nematic thickness and the anchoring,colloids spontanously form various structures. Using optical tweezers, we determine thepair potential and we discuss the different roles of capillary and elastic forces. Second,we report the behavior of silica beads at more complex NLC interfaces. By controllingthe geometry of the interfaces and the colloids density, with microfluidic techniques,we study the colloidal behavior at the surface of a thin nematic shell. The competitionbetween anchoring conditions at interfaces, nematic elsticity, topological defects anddensities of fluids is responsable of the formation of new topological configurations. Inthis part we discuss the role of colloids in the formation of these structures.
17

Light Scattering Studies of Orientational Order in Liquid Crystalline Tetrapodes and Lyotropic Chromonic Liquid Crystals

Neupane, Krishna Prasad 15 April 2009 (has links)
No description available.
18

Characterization and Biocompatibility Study of Nematic and Cholesteryl Liquid Crystals.

Soon, Chin Fhong, Youseffi, Mansour, Blagden, Nicholas, Berends, Rebecca F., Batista Lobo, Samira, Javid, Farideh A., Denyer, Morgan C.T. January 2009 (has links)
No / Intensive research in bio-engineering has been conducted in the search for flexible biomaterials that could support cell growth and cells attachment. Flexible synthetic materials that support cell growth without the aid of synthetic extracellular matrix proteins are still rare. Cholesteryl liquid crystal containing cholesteryl moieties may have suitable biological affinity. Human keratinocytes (HaCat) were cultured with a nematic liquid crystal and three cholesteryl liquid crystals of different formulation. Subsequently, the trypan blue dye exclusion assay was used to determine cell viability in the liquid crystals. The two classes of liquid crystal were characterized by Differential Scanning Calorimeter (DSC) and polarizing microscope (POM) to understand the nature of the interface material. The cell viability study in medium containing liquid crystals verified that liquid crystals had no effects on cell viability. However, only the surface of cholesteryl liquid crystal has shown affinity to HaCat cells. In addition, cells continued to proliferate in the presence of liquid crystals without a change of medium for eight days. No sign of exothermic and endothermic activities at 370C were observed from the DSC test results for the three samples. Biological and mechanical test result of the cholesteryl liquid crystals has shown that cholesteryl liquid crystals are non toxic and support cell attachment without extracellular matrix protein at very low elasticity.
19

Studies on lyotropic chromonic liquid crystals in nematic and biphasic regions

Yao, Xuxia 12 January 2013 (has links)
Chromonic liquid crystals are a relatively new class of lyotropic liquid crystals. In an effort to understand this lyotropic phase better, studies on the phase behavior, defects formed in these systems and characterization of the order were performed. We studied three chromonic liquid crystal materials in nematic and biphasic regions: Sunset Yellow FCF (SSY, a food dye), a cationic perylene diimide derivative (PDI, a conducting dye) and cromolyn sodium (DSCG, a drug). For SSY chromonics in the nematic region, order parameters ( and ) were obtained by polarized Raman measurements. Using the order parameters the flow behavior was predicted and was found to be non-flow aligning. A comprehensive viscoelastic property set of SSY chromonics was obtained by studying the statics and dynamics of defects during the formation of planar aligned monodomain. Applications of PDI thin films as vapor sensors were explored; anisotropic electronic properties of oriented PDI films show good conductivity along the columns presumably arising from the overlap between the ? systems. In the biphasic region, growth and fluctuation of SSY tactoids and interesting patterns of biphasic DSCG under capillary geometry were observed; elastic properties and surface tension were estimated based on the shape of DSCG tactoids. Polymer dispersed lyotropic chromonic liquid crystals with different drop shapes and director configurations were also fabricated using various water-soluble polymers.
20

Dynamics, Order And Fluctuations In Active Nematics : Numerical And Theoretical Studies

Mishra, Shradha 10 1900 (has links)
In this thesis we studied theoretically and numerically dynamics, order and fluctuations in two dimensional active matter with specific reference to the nematic phase in collections of self-driven particles.The aim is to study the ways in which a nonequilibrium steady state with nematic order differs from a thermal equilibrium system of the same spatial symmetry. The models we study are closely related to “flocking”[1], as well as to equations written down to describe the interaction of molecular motors and filaments in a living cell[2,3] and granular nematics [4]. We look at (i) orientational and density fluctuations in the ordered phase, (ii) the way in which density fluctuations evolve in a nematic background, and finally (iii) the coarsening of nematic order and the density field starting from a statistically homogeneous and isotropic initial state. Our work establishes several striking differences between active nematics and their thermal equilibrium counterparts. We studied two-dimensional nonequilibrium active nematics. Two-dimensional nonequilibrium nematic steady states, as found in agitated granular-rod monolayers or films of orientable amoeboid cells, were predicted [5] to have giant number fluctuations, with the standard deviation proportional to the mean. We studied this problem more closely, asking in particular whether the active nematic steady state is intrinsically phase-separated. Our work has close analogy to the work of Das and Barma[6] on particles sliding downhill on fluctuating surfaces, so we looked at a model in which particles were advected passively by the broken-symmetry modes of a nematic, via a rule proposed in [5]. We found that an initially homogeneous distribution of particles on a well-ordered nematic background clumped spontaneously, with domains growing as t1/2, and an apparently finite phase-separation order parameter in the limit of large system size. The density correlation function shows a cusp, indicating that Porod’s Law does not hold here and that the phase-separation is fluctuation-dominated[7]. Dynamics of active particles can be implemented either through microscopic rules as in[8,9]or in a long-wavelength phenomenological approach as in[5]It is important to understand how the two methods are related. The purely phenomenological approach introduces the simplest possible (and generally additive)noise consistent with conservation laws and symmetries. Deriving the long-wavelength equation by explicit coarse-graining of the microscopic rule will in general give additive and multiplicative noise terms, as seen in e.g., in [10]. We carry out such a derivation and obtain coupled fluctuating hydrodynamic equations for the orientational order parameter (polar as well as apolar) and density fields. The nonequilibrium “curvature-induced” current term postulated on symmetry grounds in[5]emerges naturally from this approach. In addition, we find a multiplicative contribution to the noise whose presence should be of importance during coarsening[11]. We studied nonequilibrium phenomena in detail by solving stochastic partial differential equations for apolar objects as obtained from microscopic rules in[8]. As a result of “curvature-induced” currents, the growth of nematic order from an initially isotropic, homogeneous state is shown to be accompanied by a remarkable clumping of the number density around topological defects. The consequent coarsening of both density and nematic order are characterised by cusps in the short-distance behaviour of the correlation functions, a breakdown of Porod’s Law. We identify the origins of this breakdown; in particular, the nature of the noise terms in the equations of motion is shown to play a key role[12]. Lastly we studied an active nematic steady-state, in two space dimensions, keeping track of only the orientational order parameter, and not the density. We apply the Dynamic Renormalization Group to the equations of motion of the order parameter. Our aim is to check whether certain characteristic nonlinearities entering these equations lead to singular renormalizations of the director stiffness coefficients, which would stabilize true long-range order in a two-dimensional active nematic, unlike in its thermal equilibrium counterpart. The nonlinearities are related to those in[13]but free of a constraint that applies at thermal equilibrium. We explore, in particular, the intriguing but ultimately deceptive similarity between a limiting case of our model and the fluctuating Burgers/KPZequation. By contrast with that case, we find that the nonlinearities are marginally irrelevant. This implies in particular that 2-dactive nematics too have only quasi-long-range order[14].

Page generated in 0.0566 seconds