• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 74
  • 18
  • 15
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Plasticité intermodale chez le hamster énucléé à la naissance : Études de la distribution des interneurones CaBPir dans les cortex visuel et auditif primaires

Desgent, Sébastien 01 1900 (has links)
No description available.
72

Détermination par approche transgénique du rôle de gênes de guidance axonale, les éphrines, dans le développement du néocortex cérébral

Depaepe, Vanessa 30 November 2005 (has links)
Les ephrines et leurs récepteurs Eph constituent une famille multigénique de facteurs de guidage cellulaire et axonal. Ces facteurs jouent un rôle-clé dans l’établissement de cartes neurales topographiques, notamment au niveau des connexions thalamocorticales, réseau neuronal majeur du cerveau des mammifères.<p><p>Notre projet visait initialement à étudier l’implication des ephrines corticales dans la génèse des connexions thalamocorticales par une approche de gain de fonction. Pour ce faire, nous avons généré des souris transgéniques présentant une expression ectopique spécifique de l’ephrine-A5 dans le cortex en développement, en utilisant une technique de transgénèse d’addition par chromosome artificiel de bactéries (BAC). <p><p>De façon surprenante, l’analyse de ces souris nous a révélé que les ephrines, à côté de leurs rôles classiques de facteurs de guidage, influençaient la taille du cortex cérébral en régulant l’apoptose des progéniteurs neuronaux. En effet, nous avons pu montrer que l’expression ectopique du ligand ephrine-A5 par les progéniteurs corticaux exprimant son récepteur EphA7 résultait en une déplétion précoce en progéniteurs corticaux par apoptose, et une diminution subséquente de la taille du cortex. Cette vague apoptotique est observée en l’absence de toute altération détectable de la prolifération, la différenciation et la migration neurale dans le cortex.<p><p>Nous avons étayé notre étude in vivo par des expériences in vitro, qui ont montré que l’ephrine-A5 recombinante était capable d’induire rapidement la mort des progéniteurs neuronaux dissociés. Nous avons également montré que cette mort cellulaire impliquait l’activation de la caspase-3, confirmant ainsi l’effet direct des ephrines et de leurs récepteurs sur une ou plusieurs cascades apoptotiques. Par contre, la stimulation des neurones post-mitotiques corticaux par l’ephrine-A5 est accompagnée d’une activation de la caspase-3 sans mort cellulaire apparente. La signalisation ephrine/Eph induirait donc l’activation de la caspase-3 dans différents types cellulaires, sans que celle-ci ne soit systématiquement le reflet d’une mort cellulaire programmée. <p><p>Parallèlement, afin d’évaluer l’importance physiologique de cette voie pro-apoptotique dépendante des ephrines, nous avons étudié des souris présentant une perte de fonction du récepteur EphA7. L’analyse de ces mutants nous a permis de mettre en évidence une diminution de l’apoptose des progéniteurs corticaux, une augmentation de la taille du cortex, ainsi qu’une hypercroissance exencéphalique de tout le cerveau antérieur dans les cas les plus extrêmes. Ces observations indiquent donc que les ephrines sont nécessaires au contrôle de la mort cellulaire programmée des progéniteurs du cortex cérébral. Nous avons également observé le même phénotype exencéphalique dans des mutants déficients en ephrines-A2, -A3 et -A5, dont l’analyse préliminaire suggère également des défauts de processus apoptotiques. <p><p>Nos diverses expériences, combinant une approche par gain et perte de fonction, à la fois in vivo et in vitro, ont ainsi permis de proposer un nouveau rôle des ephrines en marge de leur implication dans la guidance axonale, à savoir un rôle dans le contrôle de la taille cérébrale par induction de l’apoptose des progéniteurs corticaux.<p>La mise en évidence de cette nouvelle voie de signalisation pro-apoptotique pourrait avoir des implications importantes dans d’autres aspects de la biologie du développement et des cellules souches, ainsi que dans l’oncogénèse. <p> / Doctorat en sciences biomédicales / info:eu-repo/semantics/nonPublished
73

Perirhinal feedback input controls neocortical memory formation via layer 1

Shin, Jiyun 29 January 2021 (has links)
Das deklarative Gedächtnis beruht auf Wechselwirkungen zwischen dem medialen Temporallappens (MTL) und Neokortex. Aufgrund der verteilten Natur neokortikaler Netzwerke bleiben zelluläre Ziele und Mechanismen der Gedächtnisbildung im Neokortex jedoch schwer fassbar. Im sechsschichtigen Säugetier-Neokortex konvergieren die Top-Down-Inputs auf Schicht 1 (L1). Wir untersuchten, wie Top-Down-Inputs von MTL die neokortikale Aktivität während der Gedächtnisbildung modulieren. Wir haben zunächst ein Kortex- und Hippocampus-abhängiges Lernparadigma angepasst, in dem Tiere gelernt haben, direkte kortikale Mikrostimulation und Belohnung zu assoziieren. Neuronen in den tiefen Schichten des perirhinalen Kortex lieferten monosynaptische Eingaben in L1 des primären somatosensorischen Kortex (S1), wo die Mikrostimulation vorgestellt wurde. Die chemogenetische Unterdrückung der perirhinalen Inputs in L1 von S1 störte die Gedächtnisbildung, hatte jedoch keinen Einfluss auf die Leistung der Tiere nach abgeschlossenem Lernen. Dem Lernen folgte das Auftreten einer klaren Subpopulation von Pyramidenneuronen der Schicht 5 (L5), die durch hochfrequentes Burst-Feuern gekennzeichnet war und durch Blockieren der perirhinalen Inputs zu L1 reduziert werden konnte. Interessanterweise zeigte ein ähnlicher Anteil an apikalen Dendriten von L5-Pyramidenneuronen ebenfalls eine signifikant erhöhte Ca2+-Aktivität während des Gedächtnisabrufs bei Expertentieren. Wichtig ist, dass die Störung der dendritischen Ca2+-Aktivität das Lernen beeinträchtigte, was darauf hindeutet, dass apikale Dendriten von L5-Pyramidenneuronen eine entscheidende Rolle bei der Bildung des neokortikalen Gedächtnisses spielen. Wir schließen daraus, dass MTL-Eingaben das Lernen über einen perirhinalen vermittelten Gating-Prozess in L1 steuern, der sich in einer erhöhten dendritischen Ca2+-Aktivität und einem Burst-Firing in pyramidalen L5-Neuronen manifestiert. / Declarative memory relies on interactions between the medial temporal lobe (MTL) and neocortex. However, due the distributed nature of neocortical networks, cellular targets and mechanisms of memory formation in the neocortex remain elusive. In the six-layered mammalian neocortex, top-down inputs converge on its outermost layer, layer 1 (L1). We examined how layer-specific top-down inputs from MTL modulate neocortical activity during memory formation. We first adapted a cortical- and hippocampal-dependent learning paradigm, in which animals learned to associate direct cortical microstimulation and reward, and characterized the learning behavior of rats and mice. We next showed that neurons in the deep layers of the perirhinal cortex not only provide monosynaptic inputs to L1 of the primary somatosensory cortex (S1), where microstimulation was presented, but also actively reflect the behavioral outcome. Chemogenetic suppression of perirhinal inputs to L1 of S1 disrupted early memory formation but did not affect animals’ performance after learning. The learning was followed by an emergence of a distinct subpopulation of layer 5 (L5) pyramidal neurons characterized by high-frequency burst firing, which could be reduced by blocking perirhinal inputs to L1. Interestingly, a similar proportion of apical dendrites (~10%) of L5 pyramidal neurons also displayed significantly enhanced calcium (Ca2+) activity during memory retrieval in expert animals. Importantly, disrupting dendritic Ca2+ activity impaired learning, suggesting that apical dendrites of L5 pyramidal neurons have a critical role in neocortical memory formation. Taken together, these results suggest that MTL inputs control learning via a perirhinal-mediated gating process in L1, manifested by elevated dendritic Ca2+ activity and burst firing in L5 pyramidal neurons. The present study provides insights into cellular mechanisms of learning and memory representations in the neocortex.
74

Muscarinic Cholinergic Modulation of Neuronal Excitability and Dynamics via Ether-a-go-go-Related Gene Potassium Channel in Rodent Neocortical Pyramidal Cells

Cui, DongBo 26 August 2019 (has links)
No description available.

Page generated in 0.0414 seconds