• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 5
  • 2
  • Tagged with
  • 26
  • 26
  • 26
  • 15
  • 14
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Worst-case delay analysis of core-to-IO flows over many-cores architectures / Analyse des délais pire cas des flux entre coeur et interfaces entrées/sorties sur des architectures pluri-coeurs

Abdallah, Laure 05 April 2017 (has links)
Les architectures pluri-coeurs sont plus intéressantes pour concevoir des systèmes en temps réel que les systèmes multi-coeurs car il est possible de les maîtriser plus facilement et d’intégrer un plus grand nombre d’applications, potentiellement de différents niveau de criticité. Dans les systèmes temps réel embarqués, ces architectures peuvent être utilisées comme des éléments de traitement au sein d’un réseau fédérateur car ils fournissent un grand nombre d’interfaces Entrées/Sorties telles que les contrôleurs Ethernet et les interfaces de la mémoire DDR-SDRAM. Aussi, il est possible d’y allouer des applications ayant différents niveaux de criticités. Ces applications communiquent entre elles à travers le réseau sur puce (NoC) du pluri coeur et avec des capteurs et des actionneurs via l’interface Ethernet. Afin de garantir les contraintes temps réel de ces applications, les délais de transmission pire cas (WCTT) doivent être calculés pour les flux entre les coeurs ("inter-core") et les flux entre les coeurs et les interfaces entrées/sorties ("core-to-I/O"). Plusieurs réseaux sur puce (NoCs) ciblant les systèmes en temps réel dur ont été conçus en s’appuyant sur des extensions matérielles spécifiques. Cependant, aucune de ces extensions ne sont actuellement disponibles dans les architectures de réseaux sur puce commercialisés, qui se basent sur la commutation wormhole avec la stratégie d’arbitrage par tourniquet. En utilisant cette stratégie de commutation, différents types d’interférences peuvent se produire sur le réseau sur puce entre les flux. De plus, le placement de tâches des applications critiques et non critiques a un impact sur les contentions que peut subir les flux "core-to-I/O". Ces flux "core-to-I/O" parcourent deux réseaux de vitesses différentes: le NoC et Ethernet. Sur le NoC, la taille des paquets autorisés est beaucoup plus petite que la taille des trames Ethernet. Ainsi, lorsque la trame Ethernet est transmise sur le NoC, elle est divisée en plusieurs paquets. La trame sera supprimée de la mémoire tampon de l’interface Ethernet uniquement lorsque la totalité des données aura été transmise. Malheureusement, la congestion du NoC ajoute des délais supplémentaires à la transmission des paquets et la taille de la mémoire tampon de l’interface Ethernet est limitée. En conséquence, ce comportement peut aboutir au rejet des trames Ethernet. L’idée donc est de pouvoir analyser les délais de transmission pire cas sur les NoC et de réduire leurs délais afin d’éviter ce problème de rejet. Dans cette thèse, nous montrons que le pessimisme de méthodes existantes de calcul de WCTT et les stratégies de placements existantes conduisent à rejeter des trames Ethernet en raison d’une congestion interne sur le NoC. Des propriétés des réseaux utilisant la commutation "wormhole" ont été définies et validées afin de mieux prendre en compte les conflits entre les flux. Une stratégie de placement de tâches qui prend en compte les communications avec les I/O a été ensuite proposée. Cette stratégie vise à diminuer les contentions des flux qui proviennent de l’I/O et donc de réduire leurs WCTTs. Les résultats obtenus par la méthode de calcul définie au cours de cette thèse montrent que les valeurs du WCTT des flux peuvent être réduites jusqu’à 50% par rapport aux valeurs de WCTT obtenues par les méthodes de calcul existantes. En outre, les résultats expérimentaux sur des applications avioniques réelles montrent des améliorations significatives des délais de transmission des flux "core-to-I/O", jusqu’à 94%, sans impact significatif sur ceux des flux "intercore". Ces améliorations sont dues à la stratégie d’allocation définie qui place les applications de manière à réduire l’impact des flux non critiques sur les flux critiques. Ces réductions de WCTT des flux "core-to-I/O" évitent le rejet des trames Ethernet. / Many-core architectures are more promising hardware to design real-time systems than multi-core systems as they should enable an easier mastered integration of a higher number of applications, potentially of different level of criticalities. In embedded real-time systems, these architectures will be integrated within backbone Ethernet networks, as they mostly provide Ethernet controllers as Input/Output(I/O) interfaces. Thus, a number of applications of different level of criticalities could be allocated on the Network-on-Chip (NoC) and required to communicate with sensors and actuators. However, the worst-case behavior of NoC for both inter-core and core-to-I/O communications must be established. Several NoCs targeting hard real-time systems, made of specific hardware extensions, have been designed. However, none of these extensions are currently available in commercially available NoC-based many-core architectures, that instead rely on wormhole switching with round-robin arbitration. Using this switching strategy, interference patterns can occur between direct and indirect flows on many-cores. Besides, the mapping over the NoC of both critical and non-critical applications has an impact on the network contention these core-to-I/O communications exhibit. These core-to-I/O flows (coming from the Ethernet interface of the NoC) cross two networks of different speeds: NoC and Ethernet. On the NoC, the size of allowed packets is much smaller than the size of Ethernet frames. Thus, once an Ethernet frame is transmitted over the NoC, it will be divided into many packets. When all the data corresponding to this frame are received by the DDR-SDRAM memory on the NoC, the frame is removed from the buffer of the Ethernet interface. In addition, the congestion on the NoC, due to wormhole switching, can delay these flows. Besides, the buffer in the Ethernet interface has a limited capacity. Then, this behavior may lead to a problem of dropping Ethernet frames. The idea is therefore to analyze the worst case transmission delays on the NoC and reduce the delays of the core-to-I/O flows. In this thesis, we show that the pessimism of the existing Worst-Case Traversal Time (WCTT) computing methods and the existing mapping strategies lead to drop Ethernet frames due to an internal congestion in the NoC. Thus, we demonstrate properties of such NoC-based wormhole networks to reduce the pessimism when modeling flows in contentions. Then, we propose a mapping strategy that minimizes the contention of core-to-I/O flows in order to solve this problem. We show that the WCTT values can be reduced up to 50% compared to current state-of-the-art real-time packet schedulability analysis. These results are due to the modeling of the real impact of the flows in contention in our proposed computing method. Besides, experimental results on real avionics applications show significant improvements of core-to-I/O flows transmission delays, up to 94%, without significantly impacting transmission delays of core-to-core flows. These improvements are due to our mapping strategy that allocates the applications in such a way to reduce the impact of non-critical flows on critical flows. These reductions on the WCTT of the core-to-I/O flows avoid the drop of Ethernet frames.
22

Designing Low Power and High Performance Network-on-Chip Communication Architectures for Nanometer SoCs

Reehal, Gursharan Kaur 19 July 2012 (has links)
No description available.
23

Approche efficace pour la conception des architectures multiprocesseurs sur puce électronique

Elie, Etienne 12 1900 (has links)
Les systèmes multiprocesseurs sur puce électronique (On-Chip Multiprocessor [OCM]) sont considérés comme les meilleures structures pour occuper l'espace disponible sur les circuits intégrés actuels. Dans nos travaux, nous nous intéressons à un modèle architectural, appelé architecture isométrique de systèmes multiprocesseurs sur puce, qui permet d'évaluer, de prédire et d'optimiser les systèmes OCM en misant sur une organisation efficace des nœuds (processeurs et mémoires), et à des méthodologies qui permettent d'utiliser efficacement ces architectures. Dans la première partie de la thèse, nous nous intéressons à la topologie du modèle et nous proposons une architecture qui permet d'utiliser efficacement et massivement les mémoires sur la puce. Les processeurs et les mémoires sont organisés selon une approche isométrique qui consiste à rapprocher les données des processus plutôt que d'optimiser les transferts entre les processeurs et les mémoires disposés de manière conventionnelle. L'architecture est un modèle maillé en trois dimensions. La disposition des unités sur ce modèle est inspirée de la structure cristalline du chlorure de sodium (NaCl), où chaque processeur peut accéder à six mémoires à la fois et où chaque mémoire peut communiquer avec autant de processeurs à la fois. Dans la deuxième partie de notre travail, nous nous intéressons à une méthodologie de décomposition où le nombre de nœuds du modèle est idéal et peut être déterminé à partir d'une spécification matricielle de l'application qui est traitée par le modèle proposé. Sachant que la performance d'un modèle dépend de la quantité de flot de données échangées entre ses unités, en l'occurrence leur nombre, et notre but étant de garantir une bonne performance de calcul en fonction de l'application traitée, nous proposons de trouver le nombre idéal de processeurs et de mémoires du système à construire. Aussi, considérons-nous la décomposition de la spécification du modèle à construire ou de l'application à traiter en fonction de l'équilibre de charge des unités. Nous proposons ainsi une approche de décomposition sur trois points : la transformation de la spécification ou de l'application en une matrice d'incidence dont les éléments sont les flots de données entre les processus et les données, une nouvelle méthodologie basée sur le problème de la formation des cellules (Cell Formation Problem [CFP]), et un équilibre de charge de processus dans les processeurs et de données dans les mémoires. Dans la troisième partie, toujours dans le souci de concevoir un système efficace et performant, nous nous intéressons à l'affectation des processeurs et des mémoires par une méthodologie en deux étapes. Dans un premier temps, nous affectons des unités aux nœuds du système, considéré ici comme un graphe non orienté, et dans un deuxième temps, nous affectons des valeurs aux arcs de ce graphe. Pour l'affectation, nous proposons une modélisation des applications décomposées en utilisant une approche matricielle et l'utilisation du problème d'affectation quadratique (Quadratic Assignment Problem [QAP]). Pour l'affectation de valeurs aux arcs, nous proposons une approche de perturbation graduelle, afin de chercher la meilleure combinaison du coût de l'affectation, ceci en respectant certains paramètres comme la température, la dissipation de chaleur, la consommation d'énergie et la surface occupée par la puce. Le but ultime de ce travail est de proposer aux architectes de systèmes multiprocesseurs sur puce une méthodologie non traditionnelle et un outil systématique et efficace d'aide à la conception dès la phase de la spécification fonctionnelle du système. / On-Chip Multiprocessor (OCM) systems are considered to be the best structures to occupy the abundant space available on today integrated circuits (IC). In our thesis, we are interested on an architectural model, called Isometric on-Chip Multiprocessor Architecture (ICMA), that optimizes the OCM systems by focusing on an effective organization of cores (processors and memories) and on methodologies that optimize the use of these architectures. In the first part of this work, we study the topology of ICMA and propose an architecture that enables efficient and massive use of on-chip memories. ICMA organizes processors and memories in an isometric structure with the objective to get processed data close to the processors that use them rather than to optimize transfers between processors and memories, arranged in a conventional manner. ICMA is a mesh model in three dimensions. The organization of our architecture is inspired by the crystal structure of sodium chloride (NaCl), where each processor can access six different memories and where each memory can communicate with six processors at once. In the second part of our work, we focus on a methodology of decomposition. This methodology is used to find the optimal number of nodes for a given application or specification. The approach we use is to transform an application or a specification into an incidence matrix, where the entries of this matrix are the interactions between processors and memories as entries. In other words, knowing that the performance of a model depends on the intensity of the data flow exchanged between its units, namely their number, we aim to guarantee a good computing performance by finding the optimal number of processors and memories that are suitable for the application computation. We also consider the load balancing of the units of ICMA during the specification phase of the design. Our proposed decomposition is on three points: the transformation of the specification or application into an incidence matrix, a new methodology based on the Cell Formation Problem (CFP), and load balancing processes in the processors and data in memories. In the third part, we focus on the allocation of processor and memory by a two-step methodology. Initially, we allocate units to the nodes of the system structure, considered here as an undirected graph, and subsequently we assign values to the arcs of this graph. For the assignment, we propose modeling of the decomposed application using a matrix approach and the Quadratic Assignment Problem (QAP). For the assignment of the values to the arcs, we propose an approach of gradual changes of these values in order to seek the best combination of cost allocation, this under certain metric constraints such as temperature, heat dissipation, power consumption and surface occupied by the chip. The ultimate goal of this work is to propose a methodology for non-traditional, systematic and effective decision support design tools for multiprocessor system architects, from the phase of functional specification.
24

Réalisation d'un réseau de neurones "SOM" sur une architecture matérielle adaptable et extensible à base de réseaux sur puce "NoC" / Neural Network Implementation on an Adaptable and Scalable Hardware Architecture based-on Network-on-Chip

Abadi, Mehdi 07 July 2018 (has links)
Depuis son introduction en 1982, la carte auto-organisatrice de Kohonen (Self-Organizing Map : SOM) a prouvé ses capacités de classification et visualisation des données multidimensionnelles dans différents domaines d’application. Les implémentations matérielles de la carte SOM, en exploitant le taux de parallélisme élevé de l’algorithme de Kohonen, permettent d’augmenter les performances de ce modèle neuronal souvent au détriment de la flexibilité. D’autre part, la flexibilité est offerte par les implémentations logicielles qui quant à elles ne sont pas adaptées pour les applications temps réel à cause de leurs performances temporelles limitées. Dans cette thèse nous avons proposé une architecture matérielle distribuée, adaptable, flexible et extensible de la carte SOM à base de NoC dédiée pour une implantation matérielle sur FPGA. A base de cette approche, nous avons également proposé une architecture matérielle innovante d’une carte SOM à structure croissante au cours de la phase d’apprentissage / Since its introduction in 1982, Kohonen’s Self-Organizing Map (SOM) showed its ability to classify and visualize multidimensional data in various application fields. Hardware implementations of SOM, by exploiting the inherent parallelism of the Kohonen algorithm, allow to increase the overall performances of this neuronal network, often at the expense of the flexibility. On the other hand, the flexibility is offered by software implementations which on their side are not suited for real-time applications due to the limited time performances. In this thesis we proposed a distributed, adaptable, flexible and scalable hardware architecture of SOM based on Network-on-Chip (NoC) designed for FPGA implementation. Moreover, based on this approach we also proposed a novel hardware architecture of a growing SOM able to evolve its own structure during the learning phase
25

Approche efficace pour la conception des architectures multiprocesseurs sur puce électronique

Elie, Etienne 12 1900 (has links)
Les systèmes multiprocesseurs sur puce électronique (On-Chip Multiprocessor [OCM]) sont considérés comme les meilleures structures pour occuper l'espace disponible sur les circuits intégrés actuels. Dans nos travaux, nous nous intéressons à un modèle architectural, appelé architecture isométrique de systèmes multiprocesseurs sur puce, qui permet d'évaluer, de prédire et d'optimiser les systèmes OCM en misant sur une organisation efficace des nœuds (processeurs et mémoires), et à des méthodologies qui permettent d'utiliser efficacement ces architectures. Dans la première partie de la thèse, nous nous intéressons à la topologie du modèle et nous proposons une architecture qui permet d'utiliser efficacement et massivement les mémoires sur la puce. Les processeurs et les mémoires sont organisés selon une approche isométrique qui consiste à rapprocher les données des processus plutôt que d'optimiser les transferts entre les processeurs et les mémoires disposés de manière conventionnelle. L'architecture est un modèle maillé en trois dimensions. La disposition des unités sur ce modèle est inspirée de la structure cristalline du chlorure de sodium (NaCl), où chaque processeur peut accéder à six mémoires à la fois et où chaque mémoire peut communiquer avec autant de processeurs à la fois. Dans la deuxième partie de notre travail, nous nous intéressons à une méthodologie de décomposition où le nombre de nœuds du modèle est idéal et peut être déterminé à partir d'une spécification matricielle de l'application qui est traitée par le modèle proposé. Sachant que la performance d'un modèle dépend de la quantité de flot de données échangées entre ses unités, en l'occurrence leur nombre, et notre but étant de garantir une bonne performance de calcul en fonction de l'application traitée, nous proposons de trouver le nombre idéal de processeurs et de mémoires du système à construire. Aussi, considérons-nous la décomposition de la spécification du modèle à construire ou de l'application à traiter en fonction de l'équilibre de charge des unités. Nous proposons ainsi une approche de décomposition sur trois points : la transformation de la spécification ou de l'application en une matrice d'incidence dont les éléments sont les flots de données entre les processus et les données, une nouvelle méthodologie basée sur le problème de la formation des cellules (Cell Formation Problem [CFP]), et un équilibre de charge de processus dans les processeurs et de données dans les mémoires. Dans la troisième partie, toujours dans le souci de concevoir un système efficace et performant, nous nous intéressons à l'affectation des processeurs et des mémoires par une méthodologie en deux étapes. Dans un premier temps, nous affectons des unités aux nœuds du système, considéré ici comme un graphe non orienté, et dans un deuxième temps, nous affectons des valeurs aux arcs de ce graphe. Pour l'affectation, nous proposons une modélisation des applications décomposées en utilisant une approche matricielle et l'utilisation du problème d'affectation quadratique (Quadratic Assignment Problem [QAP]). Pour l'affectation de valeurs aux arcs, nous proposons une approche de perturbation graduelle, afin de chercher la meilleure combinaison du coût de l'affectation, ceci en respectant certains paramètres comme la température, la dissipation de chaleur, la consommation d'énergie et la surface occupée par la puce. Le but ultime de ce travail est de proposer aux architectes de systèmes multiprocesseurs sur puce une méthodologie non traditionnelle et un outil systématique et efficace d'aide à la conception dès la phase de la spécification fonctionnelle du système. / On-Chip Multiprocessor (OCM) systems are considered to be the best structures to occupy the abundant space available on today integrated circuits (IC). In our thesis, we are interested on an architectural model, called Isometric on-Chip Multiprocessor Architecture (ICMA), that optimizes the OCM systems by focusing on an effective organization of cores (processors and memories) and on methodologies that optimize the use of these architectures. In the first part of this work, we study the topology of ICMA and propose an architecture that enables efficient and massive use of on-chip memories. ICMA organizes processors and memories in an isometric structure with the objective to get processed data close to the processors that use them rather than to optimize transfers between processors and memories, arranged in a conventional manner. ICMA is a mesh model in three dimensions. The organization of our architecture is inspired by the crystal structure of sodium chloride (NaCl), where each processor can access six different memories and where each memory can communicate with six processors at once. In the second part of our work, we focus on a methodology of decomposition. This methodology is used to find the optimal number of nodes for a given application or specification. The approach we use is to transform an application or a specification into an incidence matrix, where the entries of this matrix are the interactions between processors and memories as entries. In other words, knowing that the performance of a model depends on the intensity of the data flow exchanged between its units, namely their number, we aim to guarantee a good computing performance by finding the optimal number of processors and memories that are suitable for the application computation. We also consider the load balancing of the units of ICMA during the specification phase of the design. Our proposed decomposition is on three points: the transformation of the specification or application into an incidence matrix, a new methodology based on the Cell Formation Problem (CFP), and load balancing processes in the processors and data in memories. In the third part, we focus on the allocation of processor and memory by a two-step methodology. Initially, we allocate units to the nodes of the system structure, considered here as an undirected graph, and subsequently we assign values to the arcs of this graph. For the assignment, we propose modeling of the decomposed application using a matrix approach and the Quadratic Assignment Problem (QAP). For the assignment of the values to the arcs, we propose an approach of gradual changes of these values in order to seek the best combination of cost allocation, this under certain metric constraints such as temperature, heat dissipation, power consumption and surface occupied by the chip. The ultimate goal of this work is to propose a methodology for non-traditional, systematic and effective decision support design tools for multiprocessor system architects, from the phase of functional specification.
26

EVALUATION OF SOURCE ROUTING FOR MESH TOPOLOGY NETWORK ON CHIP PLATFORMS

MUBEEN, SAAD January 2009 (has links)
Network on Chip is a scalable and flexible communication infrastructure for the design of core based System on Chip. Communication performance of a NoC depends heavily on the routing algorithm. Deterministic and adaptive distributed routing algorithms have been advocated in all the current NoC architectural proposals. In this thesis we make a case for the use of source routing for NoCs, especially for regular topologies like mesh. The advantages of source routing include in-order packet delivery; faster and simpler router design; and possibility of mixing non-minimal paths in a mainly minimal routing. We propose a method to compute paths for various communications in such a way that traffic congestion is avoided while ensuring deadlock free routing. We also propose an efficient scheme to encode the paths. We developed a tool in Matlab that computes paths for source routing for both general and application specific communications. Depending upon the type of traffic, this tool computes paths for source routing by selecting best routing algorithm out of many routing algorithms. The tool uses a constructive path improvement algorithm to compute paths that give more uniform link load distribution. It also generates different types of traffics. We also developed a simulator capable of simulating source routing for mesh topology NoC. The experiments and simulations which we performed were successful and the results show that the advantages of source routing especially lower packet latency more than compensate its disadvantages. The results also demonstrate that source routing can be a good routing candidate for practical core based SoCs design using network on chip communication infrastructure.

Page generated in 0.0221 seconds