• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Verbesserung der Abbildungsgüte aggregierter Modelle zur Simulation und Optimierung komplexer Fernwärmenetze /

Wigbels, Michael. January 2007 (has links) (PDF)
Universiẗat, Diss.--Dortmund, 2007.
2

Modellierung und simulative Analyse von chipinternen Versorgungsnetzen

Rauscher, Jürgen January 2007 (has links)
Zugl.: Ulm, Univ., Diss., 2007
3

Voltage Stability and Reactive Power Provision in a Decentralizing Energy System / Spannungshaltung und Blindleistungsmanagement bei zunehmend dezentraler Stromerzeugung - eine techo-ökonomische Analyse

Hinz, Fabian 19 December 2017 (has links) (PDF)
Electricity grids require the ancillary services frequency control, grid operation, re-establishment of supply and voltage stability for a proper operation. Historically, conventional power plants in the transmission grid were the main source providing these services. An increasing share of decentralized renewable energy in the electricity mix causes decreasing dispatch times for conventional power plants and may consequently lead to a partial replacement of these technologies. Decentralized energy sources are technically capable of providing ancillary services. This work focuses on the provision of reactive power for voltage stability from decentralized sources. The aim is to answer the question of how voltage stability and reactive power management can be achieved in a future electricity system with increasing shares of decentralized renewable energy sources in an economical and efficient way. A methodology that takes reactive power and voltage stability in an electricity system into account is developed. It allows for the evaluation of the economic benefits of different reactive power supply options. A non-linear and a linearized techno-economic grid model are formulated for this purpose. The analysis reveals an increasing importance of reactive power from the distribution grid in future development scenarios, in particular if delays in grid extension are taken into account. The bottom-up assessment indicates a savings potential of up to 40 mio. EUR per year if reactive power sources in the distribution grid provide reactive power in a controlled manner. Although these savings constitute only a small portion of the total cost of the electricity system, reactive power from decentralized energy sources contributes to the change towards a system based on renewable energy sources. A comparison of different reactive power remuneration mechanisms shows that a variety of approaches exist that could replace the inflexible mechanisms of obligatory provision and penalized consumption of reactive power that are mostly in place nowadays.
4

Voltage Stability and Reactive Power Provision in a Decentralizing Energy System: A Techno-economic Analysis

Hinz, Fabian 06 December 2017 (has links)
Electricity grids require the ancillary services frequency control, grid operation, re-establishment of supply and voltage stability for a proper operation. Historically, conventional power plants in the transmission grid were the main source providing these services. An increasing share of decentralized renewable energy in the electricity mix causes decreasing dispatch times for conventional power plants and may consequently lead to a partial replacement of these technologies. Decentralized energy sources are technically capable of providing ancillary services. This work focuses on the provision of reactive power for voltage stability from decentralized sources. The aim is to answer the question of how voltage stability and reactive power management can be achieved in a future electricity system with increasing shares of decentralized renewable energy sources in an economical and efficient way. A methodology that takes reactive power and voltage stability in an electricity system into account is developed. It allows for the evaluation of the economic benefits of different reactive power supply options. A non-linear and a linearized techno-economic grid model are formulated for this purpose. The analysis reveals an increasing importance of reactive power from the distribution grid in future development scenarios, in particular if delays in grid extension are taken into account. The bottom-up assessment indicates a savings potential of up to 40 mio. EUR per year if reactive power sources in the distribution grid provide reactive power in a controlled manner. Although these savings constitute only a small portion of the total cost of the electricity system, reactive power from decentralized energy sources contributes to the change towards a system based on renewable energy sources. A comparison of different reactive power remuneration mechanisms shows that a variety of approaches exist that could replace the inflexible mechanisms of obligatory provision and penalized consumption of reactive power that are mostly in place nowadays.
5

Modell zur Auslegung und Betriebsoptimierung von Nah- und Fernkältenetzen / Model for design and operational optimisation of district cooling networks

Oppelt, Thomas 15 October 2015 (has links) (PDF)
Fernkälte bietet das Potenzial, wirtschaftlich und ökologisch vorteilhaft zur Deckung des stetig zunehmenden Klimakältebedarfs beizutragen. Im Rahmen dieser Arbeit wurde ein dynamisches thermohydraulisches Netzmodell „ISENA“ entwickelt, mit dem während der Planung und des Betriebs von Fernkältesystemen auftretende Fragen, beispielsweise in Bezug auf Wirtschaftlichkeit und Energieeffizienz, beantwortet werden können. Das Netzmodell setzt sich aus einem quasistationären hydraulischen Modell und einem instationären thermischen Modell zusammen, das auf der Verfolgung von Wasserpfropfen durch das gesamte Netz basiert (Lagrange-Ansatz). Mit diesem Modellierungsansatz können numerische Fehler sowie Bilanzungenauigkeiten vermieden werden, sodass sich eine höhere Ergebnisgüte im Vergleich zu bisher bekannten Netzmodellen erreichen lässt. Ebenfalls neu entwickelt wurde das Teilmodell zur Abbildung der Wärmeströme über die Wände unterirdischer Rohrpaare (Kälteverluste und -gewinne). Dieses Modell erlaubt die Bestimmung der instationären Rohrwand-Wärmeströme für wärmegedämmte unterirdische Rohrpaare, Rohrpaare mit gedämmtem Vor- und ungedämmtem Rücklauf sowie ungedämmte Rohrpaare. Anhand von Validierungs- und Verifikationsrechnungen wird gezeigt, dass ISENA verlässliche Ergebnisse liefert und für die praktische Anwendung geeignet ist. Abschließende Beispielrechnungen geben einen Einblick in die Untersuchungsmöglichkeiten, die das neue Modell bietet – unter anderem im Hinblick auf den Vergleich von Pumpenregelungsvarianten, den Einfluss von Rohrdämmung und Erdreicheigenschaften auf Kälteverluste und -gewinne sowie die Einbindung von Hochtemperatur-Kälteverbrauchern in den Netzrücklauf. / District cooling can provide economic and ecological benefits while supplying the increasing cooling demand for air conditioning. In the present thesis, a dynamic thermo-hydraulic model “ISENA” is presented which may be used in order to answer questions arising during design and operation of district cooling networks—e. g., that are related to economic and energy efficiency. The network model consists of a quasi-static hydraulic module and a transient thermal module being based on the tracking of water segments through the entire network (Lagrangian method). With this approach, numerical errors and inaccuracies in the balance of conserved quantities could be avoided, which eventually leads to a better reliability of the results as compared to that obtained from other network models. Additionally, a new sub-model has been developed for predicting the transient heat flux through the walls of buried pipes in order to model thermal gains and losses. This model covers un-insulated, insulated and combinations of insulated as well as un-insulated pipes. Calculations performed for the purpose of validation and verification are presented in order to demonstrate that ISENA provides reliable results and hence is suitable for practical applications. Finally, example simulations show the various possibilities provided by the new model—for example, concerning the comparison of different strategies for pump control, the influence of pipe insulation and soil properties on thermal gains and losses as well as the connection of buildings equipped with high temperature cooling systems to the return line of the network.
6

Modell zur Auslegung und Betriebsoptimierung von Nah- und Fernkältenetzen

Oppelt, Thomas 30 September 2015 (has links)
Fernkälte bietet das Potenzial, wirtschaftlich und ökologisch vorteilhaft zur Deckung des stetig zunehmenden Klimakältebedarfs beizutragen. Im Rahmen dieser Arbeit wurde ein dynamisches thermohydraulisches Netzmodell „ISENA“ entwickelt, mit dem während der Planung und des Betriebs von Fernkältesystemen auftretende Fragen, beispielsweise in Bezug auf Wirtschaftlichkeit und Energieeffizienz, beantwortet werden können. Das Netzmodell setzt sich aus einem quasistationären hydraulischen Modell und einem instationären thermischen Modell zusammen, das auf der Verfolgung von Wasserpfropfen durch das gesamte Netz basiert (Lagrange-Ansatz). Mit diesem Modellierungsansatz können numerische Fehler sowie Bilanzungenauigkeiten vermieden werden, sodass sich eine höhere Ergebnisgüte im Vergleich zu bisher bekannten Netzmodellen erreichen lässt. Ebenfalls neu entwickelt wurde das Teilmodell zur Abbildung der Wärmeströme über die Wände unterirdischer Rohrpaare (Kälteverluste und -gewinne). Dieses Modell erlaubt die Bestimmung der instationären Rohrwand-Wärmeströme für wärmegedämmte unterirdische Rohrpaare, Rohrpaare mit gedämmtem Vor- und ungedämmtem Rücklauf sowie ungedämmte Rohrpaare. Anhand von Validierungs- und Verifikationsrechnungen wird gezeigt, dass ISENA verlässliche Ergebnisse liefert und für die praktische Anwendung geeignet ist. Abschließende Beispielrechnungen geben einen Einblick in die Untersuchungsmöglichkeiten, die das neue Modell bietet – unter anderem im Hinblick auf den Vergleich von Pumpenregelungsvarianten, den Einfluss von Rohrdämmung und Erdreicheigenschaften auf Kälteverluste und -gewinne sowie die Einbindung von Hochtemperatur-Kälteverbrauchern in den Netzrücklauf.:1 Einleitung 1.1 Situation 1.2 Aufbau und Betrieb von Fernkältesystemen 1.3 Netzmodellierung und -simulation 1.4 Präzisierte Aufgabenstellung 2 Stand der Wissenschaft und Technik 2.1 Begriffe und Definitionen 2.2 Rohrleitungen 2.2.1 Technik 2.2.2 Modellierung 2.3 Peripherie 2.3.1 Kälteabnehmer 2.3.2 Durchfluss- und Differenzdruckregler 2.3.3 Erzeuger 2.3.4 Pumpen 2.3.5 Bypass 2.4 Netz 2.4.1 Netzstruktur 2.4.2 Hydraulisches Verhalten 2.4.3 Thermisches Verhalten 2.4.4 Beispielsysteme 2.5 Zwischenfazit 3 Modellerstellung 3.1 Grundlagen 3.2 Rohrleitungen 3.2.1 Hydraulisches Rohrmodell 3.2.2 Modellierung des Rohrwand-Wärmestroms 3.2.3 Thermisches Rohrmodell 3.3 Peripherie 3.3.1 Kälteabnehmer 3.3.2 Durchfluss- und Differenzdruckregler 3.3.3 Erzeuger 3.3.4 Pumpen 3.3.5 Bypass 3.3.6 Rücklaufabnehmer 3.4 Netz 3.4.1 Hydraulisches Modell 3.4.2 Thermisches Modell 3.4.3 Gesamtmodell 3.5 Programmtechnische Umsetzung 4 Modellvalidierung und -verifikation 4.1 Vorbetrachtungen 4.2 Kernmechanismen 4.2.1 Hydraulik 4.2.2 Konvektiver Energietransport 4.2.3 Wärmeübertragung über die Rohrwand 4.2.4 Wärmezufuhr bei Kälteabnehmern 4.3 Schlussfolgerungen 5 Beispielsimulationen 5.1 Vorgaben 5.2 Referenzfall 5.3 Varianten 5.3.1 Pumpenregelung 5.3.2 Netz-Vorlauftemperatur 5.3.3 Rohrgeometrie und Erdreicheigenschaften 5.3.4 Rücklaufabnehmer 6 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang A Existierende Modelle A.1 Hydraulikberechnung mit Regelelementen A.2 Rohrwand-Wärmeströme A.3 Freie Konvektion bei Stillstand im Rohr B Numerisches Modell für Rohrwand-Wärmeströme B.1 Referenzmodell B.2 Bestimmung der Neipor-Parameter B.3 Tabellierte Neipor-Parameter C Modell ISENA C.1 Pfropfenteilung C.2 Programmtechnische Umsetzung C.3 Rohrklassen C.4 Stoffdaten / District cooling can provide economic and ecological benefits while supplying the increasing cooling demand for air conditioning. In the present thesis, a dynamic thermo-hydraulic model “ISENA” is presented which may be used in order to answer questions arising during design and operation of district cooling networks—e. g., that are related to economic and energy efficiency. The network model consists of a quasi-static hydraulic module and a transient thermal module being based on the tracking of water segments through the entire network (Lagrangian method). With this approach, numerical errors and inaccuracies in the balance of conserved quantities could be avoided, which eventually leads to a better reliability of the results as compared to that obtained from other network models. Additionally, a new sub-model has been developed for predicting the transient heat flux through the walls of buried pipes in order to model thermal gains and losses. This model covers un-insulated, insulated and combinations of insulated as well as un-insulated pipes. Calculations performed for the purpose of validation and verification are presented in order to demonstrate that ISENA provides reliable results and hence is suitable for practical applications. Finally, example simulations show the various possibilities provided by the new model—for example, concerning the comparison of different strategies for pump control, the influence of pipe insulation and soil properties on thermal gains and losses as well as the connection of buildings equipped with high temperature cooling systems to the return line of the network.:1 Einleitung 1.1 Situation 1.2 Aufbau und Betrieb von Fernkältesystemen 1.3 Netzmodellierung und -simulation 1.4 Präzisierte Aufgabenstellung 2 Stand der Wissenschaft und Technik 2.1 Begriffe und Definitionen 2.2 Rohrleitungen 2.2.1 Technik 2.2.2 Modellierung 2.3 Peripherie 2.3.1 Kälteabnehmer 2.3.2 Durchfluss- und Differenzdruckregler 2.3.3 Erzeuger 2.3.4 Pumpen 2.3.5 Bypass 2.4 Netz 2.4.1 Netzstruktur 2.4.2 Hydraulisches Verhalten 2.4.3 Thermisches Verhalten 2.4.4 Beispielsysteme 2.5 Zwischenfazit 3 Modellerstellung 3.1 Grundlagen 3.2 Rohrleitungen 3.2.1 Hydraulisches Rohrmodell 3.2.2 Modellierung des Rohrwand-Wärmestroms 3.2.3 Thermisches Rohrmodell 3.3 Peripherie 3.3.1 Kälteabnehmer 3.3.2 Durchfluss- und Differenzdruckregler 3.3.3 Erzeuger 3.3.4 Pumpen 3.3.5 Bypass 3.3.6 Rücklaufabnehmer 3.4 Netz 3.4.1 Hydraulisches Modell 3.4.2 Thermisches Modell 3.4.3 Gesamtmodell 3.5 Programmtechnische Umsetzung 4 Modellvalidierung und -verifikation 4.1 Vorbetrachtungen 4.2 Kernmechanismen 4.2.1 Hydraulik 4.2.2 Konvektiver Energietransport 4.2.3 Wärmeübertragung über die Rohrwand 4.2.4 Wärmezufuhr bei Kälteabnehmern 4.3 Schlussfolgerungen 5 Beispielsimulationen 5.1 Vorgaben 5.2 Referenzfall 5.3 Varianten 5.3.1 Pumpenregelung 5.3.2 Netz-Vorlauftemperatur 5.3.3 Rohrgeometrie und Erdreicheigenschaften 5.3.4 Rücklaufabnehmer 6 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang A Existierende Modelle A.1 Hydraulikberechnung mit Regelelementen A.2 Rohrwand-Wärmeströme A.3 Freie Konvektion bei Stillstand im Rohr B Numerisches Modell für Rohrwand-Wärmeströme B.1 Referenzmodell B.2 Bestimmung der Neipor-Parameter B.3 Tabellierte Neipor-Parameter C Modell ISENA C.1 Pfropfenteilung C.2 Programmtechnische Umsetzung C.3 Rohrklassen C.4 Stoffdaten

Page generated in 0.0567 seconds