• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • Tagged with
  • 10
  • 10
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machbarkeitsuntersuchung zur Stärkung der Kraft-Wärme-Kälte-Kopplung durch den Einsatz von Kältespeichern in großen Versorgungssystemen

Urbaneck, Thorsten, Uhlig, Ulf, Platzer, Bernd, Schirmer, Ulrich, Göschel, Thomas, Zimmermann, Dieter 30 March 2006 (has links) (PDF)
Die konventionelle Kälteerzeugung mit Kompressionskältemaschinen ist mit vielen Nachteilen verbunden: hohe elektrische Lastspitzen, Energieverbräuche, Umweltbelastungen, signifikante Kosten sowie ein umfangreicher Einsatz von ozonabbauenden Kältemitteln in den letzten Jahren. Eine wesentliche Verbesserung kann durch die Kraft-Wärme-Kälte-Kopplung erreicht werden. Durch die thermisch angetriebenen Kältemaschinen ist eine rationelle Nutzung der im Kühllastfall ausreichend vorhandenen Wärme möglich. Um die Kälteerzeugung weiter energetisch, wirtschaftlich und ökologisch zu verbessern, stellt der Einsatz von Kältespeichern eine aussichtsreiche Alternative dar. In diesem Projekt wird deshalb der Kältespeicher-Einsatz speziell für die Randbedingungen in Deutschland untersucht.
2

Pilotprojekt zur Optimierung von großen Versorgungssystemen auf Basis der Kraft-Wärme-Kältekopplung mittels Kältespeicherung

Urbaneck, Thorsten, Platzer, Bernd, Schirmer, Ulrich, Uhlig, Ulf, Göschel, Thomas, Baumgart, Gunter, Fiedler, Gunter, Zimmermann, Dieter, Wittchen, Falk, Schönfelder, Veit 01 March 2010 (has links) (PDF)
In einem Vorprojekt wurde die Machbarkeit der Kältespeicherung untersucht und positiv bewertet. Obwohl in der Bundesrepublik Deutschland bis 2007 noch kein großtechnischer Kurzzeit-Kältespeicher existierte, haben die Stadtwerke Chemnitz AG einen Speicher erfolgreich errichtet. Seit 2007 ist dieser Kaltwasserspeicher in Betrieb. Die Professur Technische Thermodynamik der TU Chemnitz übernahm bei diesem Verbundforschungsvorhaben die Begleitforschung (Forschung, Entwicklung, Beratung, Überwachung). Es wurde demonstriert, dass große Kältespeicher energetische, ökologische und ökonomische Vorteile bewirken können. Diese Vorteile kann man nutzen, um die Kraft-Wärme-Kälte-Kopplung zu stärken. Neben dem höheren Einsatz von Abwärme aus der Kraft-Wärme-Kopplung, ist die Reduktion des Elektroenergiebedarfs und die Begrenzung von Lastspitzen von besonderer energiewirtschaftlicher Bedeutung. Folgeprojekte in Deutschland zeigen die Akzeptanz dieser Technik. Dieser Bericht liefert eine Beschreibung des Systems und die Ergebnisse des Verbundvorhabens. Der Schwerpunkt liegt dabei auf der Auswertung des Betriebs von 2007 bis 2009. Das zugrunde liegende Monitoringprogramm lieferte hierfür die entsprechenden Messwerte.
3

Machbarkeitsuntersuchung zur Stärkung der Kraft-Wärme-Kälte-Kopplung durch den Einsatz von Kältespeichern in großen Versorgungssystemen

Urbaneck, Thorsten, Uhlig, Ulf, Platzer, Bernd, Schirmer, Ulrich, Göschel, Thomas, Zimmermann, Dieter 30 March 2006 (has links)
Die konventionelle Kälteerzeugung mit Kompressionskältemaschinen ist mit vielen Nachteilen verbunden: hohe elektrische Lastspitzen, Energieverbräuche, Umweltbelastungen, signifikante Kosten sowie ein umfangreicher Einsatz von ozonabbauenden Kältemitteln in den letzten Jahren. Eine wesentliche Verbesserung kann durch die Kraft-Wärme-Kälte-Kopplung erreicht werden. Durch die thermisch angetriebenen Kältemaschinen ist eine rationelle Nutzung der im Kühllastfall ausreichend vorhandenen Wärme möglich. Um die Kälteerzeugung weiter energetisch, wirtschaftlich und ökologisch zu verbessern, stellt der Einsatz von Kältespeichern eine aussichtsreiche Alternative dar. In diesem Projekt wird deshalb der Kältespeicher-Einsatz speziell für die Randbedingungen in Deutschland untersucht.
4

Modell zur Auslegung und Betriebsoptimierung von Nah- und Fernkältenetzen / Model for design and operational optimisation of district cooling networks

Oppelt, Thomas 15 October 2015 (has links) (PDF)
Fernkälte bietet das Potenzial, wirtschaftlich und ökologisch vorteilhaft zur Deckung des stetig zunehmenden Klimakältebedarfs beizutragen. Im Rahmen dieser Arbeit wurde ein dynamisches thermohydraulisches Netzmodell „ISENA“ entwickelt, mit dem während der Planung und des Betriebs von Fernkältesystemen auftretende Fragen, beispielsweise in Bezug auf Wirtschaftlichkeit und Energieeffizienz, beantwortet werden können. Das Netzmodell setzt sich aus einem quasistationären hydraulischen Modell und einem instationären thermischen Modell zusammen, das auf der Verfolgung von Wasserpfropfen durch das gesamte Netz basiert (Lagrange-Ansatz). Mit diesem Modellierungsansatz können numerische Fehler sowie Bilanzungenauigkeiten vermieden werden, sodass sich eine höhere Ergebnisgüte im Vergleich zu bisher bekannten Netzmodellen erreichen lässt. Ebenfalls neu entwickelt wurde das Teilmodell zur Abbildung der Wärmeströme über die Wände unterirdischer Rohrpaare (Kälteverluste und -gewinne). Dieses Modell erlaubt die Bestimmung der instationären Rohrwand-Wärmeströme für wärmegedämmte unterirdische Rohrpaare, Rohrpaare mit gedämmtem Vor- und ungedämmtem Rücklauf sowie ungedämmte Rohrpaare. Anhand von Validierungs- und Verifikationsrechnungen wird gezeigt, dass ISENA verlässliche Ergebnisse liefert und für die praktische Anwendung geeignet ist. Abschließende Beispielrechnungen geben einen Einblick in die Untersuchungsmöglichkeiten, die das neue Modell bietet – unter anderem im Hinblick auf den Vergleich von Pumpenregelungsvarianten, den Einfluss von Rohrdämmung und Erdreicheigenschaften auf Kälteverluste und -gewinne sowie die Einbindung von Hochtemperatur-Kälteverbrauchern in den Netzrücklauf. / District cooling can provide economic and ecological benefits while supplying the increasing cooling demand for air conditioning. In the present thesis, a dynamic thermo-hydraulic model “ISENA” is presented which may be used in order to answer questions arising during design and operation of district cooling networks—e. g., that are related to economic and energy efficiency. The network model consists of a quasi-static hydraulic module and a transient thermal module being based on the tracking of water segments through the entire network (Lagrangian method). With this approach, numerical errors and inaccuracies in the balance of conserved quantities could be avoided, which eventually leads to a better reliability of the results as compared to that obtained from other network models. Additionally, a new sub-model has been developed for predicting the transient heat flux through the walls of buried pipes in order to model thermal gains and losses. This model covers un-insulated, insulated and combinations of insulated as well as un-insulated pipes. Calculations performed for the purpose of validation and verification are presented in order to demonstrate that ISENA provides reliable results and hence is suitable for practical applications. Finally, example simulations show the various possibilities provided by the new model—for example, concerning the comparison of different strategies for pump control, the influence of pipe insulation and soil properties on thermal gains and losses as well as the connection of buildings equipped with high temperature cooling systems to the return line of the network.
5

Developing a Decision Making Approach for District Cooling Systems Design using Multi-objective Optimization

Kamali, Aslan 18 August 2016 (has links) (PDF)
Energy consumption rates have been dramatically increasing on a global scale within the last few decades. A significant role in this increase is subjected by the recent high temperature levels especially at summer time which caused a rapid increase in the air conditioning demands. Such phenomena can be clearly observed in developing countries, especially those in hot climate regions, where people depend mainly on conventional air conditioning systems. These systems often show poor performance and thus negatively impact the environment which in turn contributes to global warming phenomena. In recent years, the demand for urban or district cooling technologies and networks has been increasing significantly as an alternative to conventional systems due to their higher efficiency and improved ecological impact. However, to obtain an efficient design for district cooling systems is a complex task that requires considering a wide range of cooling technologies, various network layout configuration possibilities, and several energy resources to be integrated. Thus, critical decisions have to be made regarding a variety of opportunities, options and technologies. The main objective of this thesis is to develop a tool to obtain preliminary design configurations and operation patterns for district cooling energy systems by performing roughly detailed optimizations and further, to introduce a decision-making approach to help decision makers in evaluating the economic aspects and environmental performance of urban cooling systems at an early design stage. Different aspects of the subject have been investigated in the literature by several researchers. A brief survey of the state of the art was carried out and revealed that mathematical programming models were the most common and successful technique for configuring and designing cooling systems for urban areas. As an outcome of the survey, multi objective optimization models were decided to be utilized to support the decision-making process. Hence, a multi objective optimization model has been developed to address the complicated issue of decision-making when designing a cooling system for an urban area or district. The model aims to optimize several elements of a cooling system such as: cooling network, cooling technologies, capacity and location of system equipment. In addition, various energy resources have been taken into consideration as well as different solar technologies such as: trough solar concentrators, vacuum solar collectors and PV panels. The model was developed based on the mixed integer linear programming method (MILP) and implemented using GAMS language. Two case studies were investigated using the developed model. The first case study consists of seven buildings representing a residential district while the second case study was a university campus district dominated by non-residential buildings. The study was carried out for several groups of scenarios investigating certain design parameters and operation conditions such as: Available area, production plant location, cold storage location constraints, piping prices, investment cost, constant and variable electricity tariffs, solar energy integration policy, waste heat availability, load shifting strategies, and the effect of outdoor temperature in hot regions on the district cooling system performance. The investigation consisted of three stages, with total annual cost and CO2 emissions being the first and second single objective optimization stages. The third stage was a multi objective optimization combining the earlier two single objectives. Later on, non-dominated solutions, i.e. Pareto solutions, were generated by obtaining several multi objective optimization scenarios based on the decision-makers’ preferences. Eventually, a decision-making approach was developed to help decision-makers in selecting a specific solution that best fits the designers’ or decision makers’ desires, based on the difference between the Utopia and Nadir values, i.e. total annual cost and CO2 emissions obtained at the single optimization stages. / Die Energieverbrauchsraten haben in den letzten Jahrzehnten auf globaler Ebene dramatisch zugenommen. Diese Erhöhung ist zu einem großen Teil in den jüngst hohen Temperaturniveaus, vor allem in der Sommerzeit, begründet, die einen starken Anstieg der Nachfrage nach Klimaanlagen verursachen. Solche Ereignisse sind deutlich in Entwicklungsländern zu beobachten, vor allem in heißen Klimaregionen, wo Menschen vor allem konventionelle Klimaanlagensysteme benutzen. Diese Systeme verfügen meist über eine ineffiziente Leistungsfähigkeit und wirken sich somit negativ auf die Umwelt aus, was wiederum zur globalen Erwärmung beiträgt. In den letzten Jahren ist die Nachfrage nach Stadt- oder Fernkältetechnologien und -Netzwerken als Alternative zu konventionellen Systemen aufgrund ihrer höheren Effizienz und besseren ökologischen Verträglichkeit satrk gestiegen. Ein effizientes Design für Fernkühlsysteme zu erhalten, ist allerdings eine komplexe Aufgabe, die die Integration einer breite Palette von Kühltechnologien, verschiedener Konfigurationsmöglichkeiten von Netzwerk-Layouts und unterschiedlicher Energiequellen erfordert. Hierfür ist das Treffen kritischer Entscheidungen hinsichtlich einer Vielzahl von Möglichkeiten, Optionen und Technologien unabdingbar. Das Hauptziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das vorläufige Design-Konfigurationen und Betriebsmuster für Fernkälteenergiesysteme liefert, indem aureichend detaillierte Optimierungen durchgeführt werden. Zudem soll auch ein Ansatz zur Entscheidungsfindung vorgestellt werden, der Entscheidungsträger in einem frühen Planungsstadium bei der Bewertung städtischer Kühlungssysteme hinsichtlich der wirtschaftlichen Aspekte und Umweltleistung unterstützen soll. Unterschiedliche Aspekte dieser Problemstellung wurden in der Literatur von verschiedenen Forschern untersucht. Eine kurze Analyse des derzeitigen Stands der Technik ergab, dass mathematische Programmiermodelle die am weitesten verbreitete und erfolgreichste Methode für die Konfiguration und Gestaltung von Kühlsystemen für städtische Gebiete sind. Ein weiteres Ergebnis der Analyse war die Festlegung von Mehrzieloptimierungs-Modelles für die Unterstützung des Entscheidungsprozesses. Darauf basierend wurde im Rahmen der vorliegenden Arbeit ein Mehrzieloptimierungs-Modell für die Lösung des komplexen Entscheidungsfindungsprozesses bei der Gestaltung eines Kühlsystems für ein Stadtgebiet oder einen Bezirk entwickelt. Das Modell zielt darauf ab, mehrere Elemente des Kühlsystems zu optimieren, wie beispielsweise Kühlnetzwerke, Kühltechnologien sowie Kapazität und Lage der Systemtechnik. Zusätzlich werden verschiedene Energiequellen, auch solare wie Solarkonzentratoren, Vakuum-Solarkollektoren und PV-Module, berücksichtigt. Das Modell wurde auf Basis der gemischt-ganzzahlig linearen Optimierung (MILP) entwickelt und in GAMS Sprache implementiert. Zwei Fallstudien wurden mit dem entwickelten Modell untersucht. Die erste Fallstudie besteht aus sieben Gebäuden, die ein Wohnviertel darstellen, während die zweite Fallstudie einen Universitätscampus dominiert von Nichtwohngebäuden repräsentiert. Die Untersuchung wurde für mehrere Gruppen von Szenarien durchgeführt, wobei bestimmte Designparameter und Betriebsbedingungen überprüft werden, wie zum Beispiel die zur Verfügung stehende Fläche, Lage der Kühlanlage, örtliche Restriktionen der Kältespeicherung, Rohrpreise, Investitionskosten, konstante und variable Stromtarife, Strategie zur Einbindung der Solarenergie, Verfügbarkeit von Abwärme, Strategien der Lastenverschiebung, und die Wirkung der Außentemperatur in heißen Regionen auf die Leistung des Kühlsystems. Die Untersuchung bestand aus drei Stufen, wobei die jährlichen Gesamtkosten und die CO2-Emissionen die erste und zweite Einzelzieloptimierungsstufe darstellen. Die dritte Stufe war ein Pareto-Optimierung, die die beiden ersten Ziele kombiniert. Im Anschluss wurden nicht-dominante Lösungen, also Pareto-Lösungen, erzeugt, indem mehrere Pareto-Optimierungs-Szenarien basierend auf den Präferenzen der Entscheidungsträger abgebildet wurden. Schließlich wurde ein Ansatz zur Entscheidungsfindung entwickelt, um Entscheidungsträger bei der Auswahl einer bestimmten Lösung zu unterstützen, die am besten den Präferenzen des Planers oder des Entscheidungsträgers enstpricht, basierend auf der Differenz der Utopia und Nadir Werte, d.h. der jährlichen Gesamtkosten und CO2-Emissionen, die Ergebnis der einzelnen Optimierungsstufen sind.
6

Pilotprojekt zur Optimierung von großen Versorgungssystemen auf Basis der Kraft-Wärme-Kältekopplung mittels Kältespeicherung

Urbaneck, Thorsten, Platzer, Bernd, Schirmer, Ulrich, Uhlig, Ulf, Göschel, Thomas, Baumgart, Gunter, Fiedler, Gunter, Zimmermann, Dieter, Wittchen, Falk, Schönfelder, Veit 01 March 2010 (has links)
In einem Vorprojekt wurde die Machbarkeit der Kältespeicherung untersucht und positiv bewertet. Obwohl in der Bundesrepublik Deutschland bis 2007 noch kein großtechnischer Kurzzeit-Kältespeicher existierte, haben die Stadtwerke Chemnitz AG einen Speicher erfolgreich errichtet. Seit 2007 ist dieser Kaltwasserspeicher in Betrieb. Die Professur Technische Thermodynamik der TU Chemnitz übernahm bei diesem Verbundforschungsvorhaben die Begleitforschung (Forschung, Entwicklung, Beratung, Überwachung). Es wurde demonstriert, dass große Kältespeicher energetische, ökologische und ökonomische Vorteile bewirken können. Diese Vorteile kann man nutzen, um die Kraft-Wärme-Kälte-Kopplung zu stärken. Neben dem höheren Einsatz von Abwärme aus der Kraft-Wärme-Kopplung, ist die Reduktion des Elektroenergiebedarfs und die Begrenzung von Lastspitzen von besonderer energiewirtschaftlicher Bedeutung. Folgeprojekte in Deutschland zeigen die Akzeptanz dieser Technik. Dieser Bericht liefert eine Beschreibung des Systems und die Ergebnisse des Verbundvorhabens. Der Schwerpunkt liegt dabei auf der Auswertung des Betriebs von 2007 bis 2009. Das zugrunde liegende Monitoringprogramm lieferte hierfür die entsprechenden Messwerte.
7

Developing a Decision Making Approach for District Cooling Systems Design using Multi-objective Optimization

Kamali, Aslan 29 June 2016 (has links)
Energy consumption rates have been dramatically increasing on a global scale within the last few decades. A significant role in this increase is subjected by the recent high temperature levels especially at summer time which caused a rapid increase in the air conditioning demands. Such phenomena can be clearly observed in developing countries, especially those in hot climate regions, where people depend mainly on conventional air conditioning systems. These systems often show poor performance and thus negatively impact the environment which in turn contributes to global warming phenomena. In recent years, the demand for urban or district cooling technologies and networks has been increasing significantly as an alternative to conventional systems due to their higher efficiency and improved ecological impact. However, to obtain an efficient design for district cooling systems is a complex task that requires considering a wide range of cooling technologies, various network layout configuration possibilities, and several energy resources to be integrated. Thus, critical decisions have to be made regarding a variety of opportunities, options and technologies. The main objective of this thesis is to develop a tool to obtain preliminary design configurations and operation patterns for district cooling energy systems by performing roughly detailed optimizations and further, to introduce a decision-making approach to help decision makers in evaluating the economic aspects and environmental performance of urban cooling systems at an early design stage. Different aspects of the subject have been investigated in the literature by several researchers. A brief survey of the state of the art was carried out and revealed that mathematical programming models were the most common and successful technique for configuring and designing cooling systems for urban areas. As an outcome of the survey, multi objective optimization models were decided to be utilized to support the decision-making process. Hence, a multi objective optimization model has been developed to address the complicated issue of decision-making when designing a cooling system for an urban area or district. The model aims to optimize several elements of a cooling system such as: cooling network, cooling technologies, capacity and location of system equipment. In addition, various energy resources have been taken into consideration as well as different solar technologies such as: trough solar concentrators, vacuum solar collectors and PV panels. The model was developed based on the mixed integer linear programming method (MILP) and implemented using GAMS language. Two case studies were investigated using the developed model. The first case study consists of seven buildings representing a residential district while the second case study was a university campus district dominated by non-residential buildings. The study was carried out for several groups of scenarios investigating certain design parameters and operation conditions such as: Available area, production plant location, cold storage location constraints, piping prices, investment cost, constant and variable electricity tariffs, solar energy integration policy, waste heat availability, load shifting strategies, and the effect of outdoor temperature in hot regions on the district cooling system performance. The investigation consisted of three stages, with total annual cost and CO2 emissions being the first and second single objective optimization stages. The third stage was a multi objective optimization combining the earlier two single objectives. Later on, non-dominated solutions, i.e. Pareto solutions, were generated by obtaining several multi objective optimization scenarios based on the decision-makers’ preferences. Eventually, a decision-making approach was developed to help decision-makers in selecting a specific solution that best fits the designers’ or decision makers’ desires, based on the difference between the Utopia and Nadir values, i.e. total annual cost and CO2 emissions obtained at the single optimization stages. / Die Energieverbrauchsraten haben in den letzten Jahrzehnten auf globaler Ebene dramatisch zugenommen. Diese Erhöhung ist zu einem großen Teil in den jüngst hohen Temperaturniveaus, vor allem in der Sommerzeit, begründet, die einen starken Anstieg der Nachfrage nach Klimaanlagen verursachen. Solche Ereignisse sind deutlich in Entwicklungsländern zu beobachten, vor allem in heißen Klimaregionen, wo Menschen vor allem konventionelle Klimaanlagensysteme benutzen. Diese Systeme verfügen meist über eine ineffiziente Leistungsfähigkeit und wirken sich somit negativ auf die Umwelt aus, was wiederum zur globalen Erwärmung beiträgt. In den letzten Jahren ist die Nachfrage nach Stadt- oder Fernkältetechnologien und -Netzwerken als Alternative zu konventionellen Systemen aufgrund ihrer höheren Effizienz und besseren ökologischen Verträglichkeit satrk gestiegen. Ein effizientes Design für Fernkühlsysteme zu erhalten, ist allerdings eine komplexe Aufgabe, die die Integration einer breite Palette von Kühltechnologien, verschiedener Konfigurationsmöglichkeiten von Netzwerk-Layouts und unterschiedlicher Energiequellen erfordert. Hierfür ist das Treffen kritischer Entscheidungen hinsichtlich einer Vielzahl von Möglichkeiten, Optionen und Technologien unabdingbar. Das Hauptziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das vorläufige Design-Konfigurationen und Betriebsmuster für Fernkälteenergiesysteme liefert, indem aureichend detaillierte Optimierungen durchgeführt werden. Zudem soll auch ein Ansatz zur Entscheidungsfindung vorgestellt werden, der Entscheidungsträger in einem frühen Planungsstadium bei der Bewertung städtischer Kühlungssysteme hinsichtlich der wirtschaftlichen Aspekte und Umweltleistung unterstützen soll. Unterschiedliche Aspekte dieser Problemstellung wurden in der Literatur von verschiedenen Forschern untersucht. Eine kurze Analyse des derzeitigen Stands der Technik ergab, dass mathematische Programmiermodelle die am weitesten verbreitete und erfolgreichste Methode für die Konfiguration und Gestaltung von Kühlsystemen für städtische Gebiete sind. Ein weiteres Ergebnis der Analyse war die Festlegung von Mehrzieloptimierungs-Modelles für die Unterstützung des Entscheidungsprozesses. Darauf basierend wurde im Rahmen der vorliegenden Arbeit ein Mehrzieloptimierungs-Modell für die Lösung des komplexen Entscheidungsfindungsprozesses bei der Gestaltung eines Kühlsystems für ein Stadtgebiet oder einen Bezirk entwickelt. Das Modell zielt darauf ab, mehrere Elemente des Kühlsystems zu optimieren, wie beispielsweise Kühlnetzwerke, Kühltechnologien sowie Kapazität und Lage der Systemtechnik. Zusätzlich werden verschiedene Energiequellen, auch solare wie Solarkonzentratoren, Vakuum-Solarkollektoren und PV-Module, berücksichtigt. Das Modell wurde auf Basis der gemischt-ganzzahlig linearen Optimierung (MILP) entwickelt und in GAMS Sprache implementiert. Zwei Fallstudien wurden mit dem entwickelten Modell untersucht. Die erste Fallstudie besteht aus sieben Gebäuden, die ein Wohnviertel darstellen, während die zweite Fallstudie einen Universitätscampus dominiert von Nichtwohngebäuden repräsentiert. Die Untersuchung wurde für mehrere Gruppen von Szenarien durchgeführt, wobei bestimmte Designparameter und Betriebsbedingungen überprüft werden, wie zum Beispiel die zur Verfügung stehende Fläche, Lage der Kühlanlage, örtliche Restriktionen der Kältespeicherung, Rohrpreise, Investitionskosten, konstante und variable Stromtarife, Strategie zur Einbindung der Solarenergie, Verfügbarkeit von Abwärme, Strategien der Lastenverschiebung, und die Wirkung der Außentemperatur in heißen Regionen auf die Leistung des Kühlsystems. Die Untersuchung bestand aus drei Stufen, wobei die jährlichen Gesamtkosten und die CO2-Emissionen die erste und zweite Einzelzieloptimierungsstufe darstellen. Die dritte Stufe war ein Pareto-Optimierung, die die beiden ersten Ziele kombiniert. Im Anschluss wurden nicht-dominante Lösungen, also Pareto-Lösungen, erzeugt, indem mehrere Pareto-Optimierungs-Szenarien basierend auf den Präferenzen der Entscheidungsträger abgebildet wurden. Schließlich wurde ein Ansatz zur Entscheidungsfindung entwickelt, um Entscheidungsträger bei der Auswahl einer bestimmten Lösung zu unterstützen, die am besten den Präferenzen des Planers oder des Entscheidungsträgers enstpricht, basierend auf der Differenz der Utopia und Nadir Werte, d.h. der jährlichen Gesamtkosten und CO2-Emissionen, die Ergebnis der einzelnen Optimierungsstufen sind.
8

Modell zur Auslegung und Betriebsoptimierung von Nah- und Fernkältenetzen

Oppelt, Thomas 30 September 2015 (has links)
Fernkälte bietet das Potenzial, wirtschaftlich und ökologisch vorteilhaft zur Deckung des stetig zunehmenden Klimakältebedarfs beizutragen. Im Rahmen dieser Arbeit wurde ein dynamisches thermohydraulisches Netzmodell „ISENA“ entwickelt, mit dem während der Planung und des Betriebs von Fernkältesystemen auftretende Fragen, beispielsweise in Bezug auf Wirtschaftlichkeit und Energieeffizienz, beantwortet werden können. Das Netzmodell setzt sich aus einem quasistationären hydraulischen Modell und einem instationären thermischen Modell zusammen, das auf der Verfolgung von Wasserpfropfen durch das gesamte Netz basiert (Lagrange-Ansatz). Mit diesem Modellierungsansatz können numerische Fehler sowie Bilanzungenauigkeiten vermieden werden, sodass sich eine höhere Ergebnisgüte im Vergleich zu bisher bekannten Netzmodellen erreichen lässt. Ebenfalls neu entwickelt wurde das Teilmodell zur Abbildung der Wärmeströme über die Wände unterirdischer Rohrpaare (Kälteverluste und -gewinne). Dieses Modell erlaubt die Bestimmung der instationären Rohrwand-Wärmeströme für wärmegedämmte unterirdische Rohrpaare, Rohrpaare mit gedämmtem Vor- und ungedämmtem Rücklauf sowie ungedämmte Rohrpaare. Anhand von Validierungs- und Verifikationsrechnungen wird gezeigt, dass ISENA verlässliche Ergebnisse liefert und für die praktische Anwendung geeignet ist. Abschließende Beispielrechnungen geben einen Einblick in die Untersuchungsmöglichkeiten, die das neue Modell bietet – unter anderem im Hinblick auf den Vergleich von Pumpenregelungsvarianten, den Einfluss von Rohrdämmung und Erdreicheigenschaften auf Kälteverluste und -gewinne sowie die Einbindung von Hochtemperatur-Kälteverbrauchern in den Netzrücklauf.:1 Einleitung 1.1 Situation 1.2 Aufbau und Betrieb von Fernkältesystemen 1.3 Netzmodellierung und -simulation 1.4 Präzisierte Aufgabenstellung 2 Stand der Wissenschaft und Technik 2.1 Begriffe und Definitionen 2.2 Rohrleitungen 2.2.1 Technik 2.2.2 Modellierung 2.3 Peripherie 2.3.1 Kälteabnehmer 2.3.2 Durchfluss- und Differenzdruckregler 2.3.3 Erzeuger 2.3.4 Pumpen 2.3.5 Bypass 2.4 Netz 2.4.1 Netzstruktur 2.4.2 Hydraulisches Verhalten 2.4.3 Thermisches Verhalten 2.4.4 Beispielsysteme 2.5 Zwischenfazit 3 Modellerstellung 3.1 Grundlagen 3.2 Rohrleitungen 3.2.1 Hydraulisches Rohrmodell 3.2.2 Modellierung des Rohrwand-Wärmestroms 3.2.3 Thermisches Rohrmodell 3.3 Peripherie 3.3.1 Kälteabnehmer 3.3.2 Durchfluss- und Differenzdruckregler 3.3.3 Erzeuger 3.3.4 Pumpen 3.3.5 Bypass 3.3.6 Rücklaufabnehmer 3.4 Netz 3.4.1 Hydraulisches Modell 3.4.2 Thermisches Modell 3.4.3 Gesamtmodell 3.5 Programmtechnische Umsetzung 4 Modellvalidierung und -verifikation 4.1 Vorbetrachtungen 4.2 Kernmechanismen 4.2.1 Hydraulik 4.2.2 Konvektiver Energietransport 4.2.3 Wärmeübertragung über die Rohrwand 4.2.4 Wärmezufuhr bei Kälteabnehmern 4.3 Schlussfolgerungen 5 Beispielsimulationen 5.1 Vorgaben 5.2 Referenzfall 5.3 Varianten 5.3.1 Pumpenregelung 5.3.2 Netz-Vorlauftemperatur 5.3.3 Rohrgeometrie und Erdreicheigenschaften 5.3.4 Rücklaufabnehmer 6 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang A Existierende Modelle A.1 Hydraulikberechnung mit Regelelementen A.2 Rohrwand-Wärmeströme A.3 Freie Konvektion bei Stillstand im Rohr B Numerisches Modell für Rohrwand-Wärmeströme B.1 Referenzmodell B.2 Bestimmung der Neipor-Parameter B.3 Tabellierte Neipor-Parameter C Modell ISENA C.1 Pfropfenteilung C.2 Programmtechnische Umsetzung C.3 Rohrklassen C.4 Stoffdaten / District cooling can provide economic and ecological benefits while supplying the increasing cooling demand for air conditioning. In the present thesis, a dynamic thermo-hydraulic model “ISENA” is presented which may be used in order to answer questions arising during design and operation of district cooling networks—e. g., that are related to economic and energy efficiency. The network model consists of a quasi-static hydraulic module and a transient thermal module being based on the tracking of water segments through the entire network (Lagrangian method). With this approach, numerical errors and inaccuracies in the balance of conserved quantities could be avoided, which eventually leads to a better reliability of the results as compared to that obtained from other network models. Additionally, a new sub-model has been developed for predicting the transient heat flux through the walls of buried pipes in order to model thermal gains and losses. This model covers un-insulated, insulated and combinations of insulated as well as un-insulated pipes. Calculations performed for the purpose of validation and verification are presented in order to demonstrate that ISENA provides reliable results and hence is suitable for practical applications. Finally, example simulations show the various possibilities provided by the new model—for example, concerning the comparison of different strategies for pump control, the influence of pipe insulation and soil properties on thermal gains and losses as well as the connection of buildings equipped with high temperature cooling systems to the return line of the network.:1 Einleitung 1.1 Situation 1.2 Aufbau und Betrieb von Fernkältesystemen 1.3 Netzmodellierung und -simulation 1.4 Präzisierte Aufgabenstellung 2 Stand der Wissenschaft und Technik 2.1 Begriffe und Definitionen 2.2 Rohrleitungen 2.2.1 Technik 2.2.2 Modellierung 2.3 Peripherie 2.3.1 Kälteabnehmer 2.3.2 Durchfluss- und Differenzdruckregler 2.3.3 Erzeuger 2.3.4 Pumpen 2.3.5 Bypass 2.4 Netz 2.4.1 Netzstruktur 2.4.2 Hydraulisches Verhalten 2.4.3 Thermisches Verhalten 2.4.4 Beispielsysteme 2.5 Zwischenfazit 3 Modellerstellung 3.1 Grundlagen 3.2 Rohrleitungen 3.2.1 Hydraulisches Rohrmodell 3.2.2 Modellierung des Rohrwand-Wärmestroms 3.2.3 Thermisches Rohrmodell 3.3 Peripherie 3.3.1 Kälteabnehmer 3.3.2 Durchfluss- und Differenzdruckregler 3.3.3 Erzeuger 3.3.4 Pumpen 3.3.5 Bypass 3.3.6 Rücklaufabnehmer 3.4 Netz 3.4.1 Hydraulisches Modell 3.4.2 Thermisches Modell 3.4.3 Gesamtmodell 3.5 Programmtechnische Umsetzung 4 Modellvalidierung und -verifikation 4.1 Vorbetrachtungen 4.2 Kernmechanismen 4.2.1 Hydraulik 4.2.2 Konvektiver Energietransport 4.2.3 Wärmeübertragung über die Rohrwand 4.2.4 Wärmezufuhr bei Kälteabnehmern 4.3 Schlussfolgerungen 5 Beispielsimulationen 5.1 Vorgaben 5.2 Referenzfall 5.3 Varianten 5.3.1 Pumpenregelung 5.3.2 Netz-Vorlauftemperatur 5.3.3 Rohrgeometrie und Erdreicheigenschaften 5.3.4 Rücklaufabnehmer 6 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang A Existierende Modelle A.1 Hydraulikberechnung mit Regelelementen A.2 Rohrwand-Wärmeströme A.3 Freie Konvektion bei Stillstand im Rohr B Numerisches Modell für Rohrwand-Wärmeströme B.1 Referenzmodell B.2 Bestimmung der Neipor-Parameter B.3 Tabellierte Neipor-Parameter C Modell ISENA C.1 Pfropfenteilung C.2 Programmtechnische Umsetzung C.3 Rohrklassen C.4 Stoffdaten
9

TU-Spektrum 2/2007, Magazin der Technischen Universität Chemnitz

Steinebach, Mario, Thehos, Katharina, Häckel-Riffler, Christine, Brabandt, Antje, Mahler, Janine, Chlebusch, Michael, Doriath, Thomas, Leithold, Nicole, Linne, Carina 14 September 2007 (has links) (PDF)
zweimal im Jahr erscheinende Zeitschrift über aktuelle Themen der TU Chemnitz, ergänzt von Sonderheft(en)
10

TU-Spektrum 2/2007, Magazin der Technischen Universität Chemnitz

Steinebach, Mario, Thehos, Katharina, Häckel-Riffler, Christine, Brabandt, Antje, Mahler, Janine, Chlebusch, Michael, Doriath, Thomas, Leithold, Nicole, Linne, Carina 14 September 2007 (has links)
zweimal im Jahr erscheinende Zeitschrift über aktuelle Themen der TU Chemnitz, ergänzt von Sonderheft(en)

Page generated in 0.4238 seconds