Spelling suggestions: "subject:"neuralt dcnätverk"" "subject:"neuralt denätverk""
1 |
Artificiell intelligens som evolverande animationsverktygHeder, Marcus January 2010 (has links)
Animationer av karaktärer och objekt är en viktig del vid skapandet av spel. Detta är något som det läggs mycket fokus på att få så realistisk som möjligt, även spelfysik används till viss del här för att ge karaktärer möjlighet att anpassa sig till miljöer. Det här arbetet undersöker och implementerar ett styrsystem, som används för animations generering till en trasdocka, med hjälp av artificiell intelligens. Styrsystemet använder sig av en självorganiserande artificiell intelligens för att generera animationer som följer ett specifikt beteende, i det här arbetet har animationer som fokuserar på att skydda höften skapats. Arbetet har gett goda resultat som indikerar på att denna lösning fungerar för att generera animationer på en trasdocka, som ska följa ett visst beteende. Detta visade sig möjligt genom att använda artificiellt neuralt nätverk kombinerat med genetisk algoritm.
|
2 |
Artificiell intelligens som evolverande animationsverktyg : <html /> / <html /> : <html />Heder, Marcus January 2010 (has links)
<p>Animationer av karaktärer och objekt är en viktig del vid skapandet av spel. Detta är något som det läggs mycket fokus på att få så realistisk som möjligt, även spelfysik används till viss del här för att ge karaktärer möjlighet att anpassa sig till miljöer. Det här arbetet undersöker och implementerar ett styrsystem, som används för animations generering till en trasdocka, med hjälp av artificiell intelligens. Styrsystemet använder sig av en självorganiserande artificiell intelligens för att generera animationer som följer ett specifikt beteende, i det här arbetet har animationer som fokuserar på att skydda höften skapats.</p><p>Arbetet har gett goda resultat som indikerar på att denna lösning fungerar för att generera animationer på en trasdocka, som ska följa ett visst beteende. Detta visade sig möjligt genom att använda artificiellt neuralt nätverk kombinerat med genetisk algoritm.</p>
|
3 |
Inlärning och illusionen av intelligenta karaktärer : Undersökning av hur inlärning hos karaktärer påverkar spelarens uppfattning av intelligenta karaktärer i spel / Learning and the illusion of intelligent characters : Study of how learning capabilities in characters affect players’ interpretation of intelligent characters in gamesEkberg, Marie January 2013 (has links)
Det här arbetet har undersökt hur inlärning av hur en datorstyrd karaktär fattar sina beslut baserat på det gällande speltillståndet, påverkar spelarens uppfattning om hur mänskligt intelligent dess resulterande beteende uppfattas, med bakgrunden att det finns ett behov av intelligentare beteenden hos karaktärer i spel. Undersökningen har genomförts genom att jämföra en tillståndsmaskin med ett artificiellt neuralt nätverk, implementerade i ett enklare actionspel med en spelare och en datorstyrd karaktär. Nätverket är konstruerat att initialt bete sig som tillståndsmaskinen, men sedan utveckla sitt beteende genom att lära från den individuella spelarens spelstil. Ett antal testpersoner har sedan fått spela spelet mot respektive teknik, och fått ange hur de upplevde respektive beteende i en enkätundersökning. Resultatet av undersökningens sammanställda data särskiljer inte det resulterande beteendet från tillståndsmaskinen med beteendet från det artificiella neurala nätverket, vilket kan ha en förklaring i undersökningens felkällor, samt den mindre domänen teknikerna implementerats i.
|
4 |
En jämförande studie med hjälp av maskininlärning : Vilket neuralt nätverk är mest lämpad för objektdetektering? / A comparative study using machine learning : Which neural network is most suitable for object detection?Ekström, Rosa, Nowakowski, Robin January 2022 (has links)
Artificiell intelligens, även kallat AI, har länge varit ett aktuellt ämne. Idag genomsyras hela samhället av artificiell intelligens, allt ifrån sökmotorer, servicetjänster, självkörande bilar till verktyg för att underlätta vissa arbeten. För allt detta så finns det mängder av olika neurala nätverk att välja mellan för att lösa olika problem. Men hur vet man vilket nätverk som fungerar bäst för sin uppgift? Målet med arbetet är att hitta en modell med högst noggrannhet i ett jämförande experiment. För att göra en rättvis bedömning togs en metod för att jämföra modeller inom objektdetektering med hög tillförlitlighet fram genom en litteraturstudie. I litteraturstudien extraherades data från andra jämförande studier och sammanställdes i en så kallad jämförelsemodell som beskriver de viktigaste faktorerna att ta hänsyn till när man jämför modeller. Jämförelsemodellen visar att kända dataset bör användas, mätvärdena recall, precision och F1 är de mest pålitliga och man bör motivera alla sina val då det ökar tillförlitligheten och validiteten. Därefter applicerades jämförelsemodellen i ett demonstrerande experimentet som använde sig av neurala nätverk (CNN) där två modeller Multi-Task Cascaded Convolutional Neural Network (MTCNN) och You Only Look Once (YOLOv3) tränades och testades med samma dataset. Resultatet visade att modellen YOLOv3 gav bäst resultat.
|
5 |
Evaluating the use of Machine Learning for Fault Detection using Log File AnalysisTenov, Rosen Nikolaev January 2021 (has links)
Under de senaste åren fick maskininlärning mer och mer popularitet i samhället. Den implementeras i stor utsträckning inom många datavetenskapliga områden, t.ex. igenkänning av tal, video, objekt, sentimentanalys osv. Dessutom genererar moderna datorsystem och program stora filer med loggdata under deras körning och användning. Dessa loggfiler innehåller vanligtvis enorma mängder data, vilket leder till svårigheter att bearbeta all data manuellt. Således är användning av maskininlärningstekniker vid analys av loggdata för detektering av anomalibeteende av stort intresse för att uppnå skalbar underhåll av systemen. Syftet med detta arbete var att undersöka tillgängliga framträdande metoder för att implementera maskininlärning för upptäckning av loggfel och utvärdera en av dessa metoder. Uppsatsen fokuserade på att utvärdera DeepLog artificiella neurala nätverk som innehåller Long short-term memory algoritm. Utvärderingen omfattade mätning av den exekveringstid som behövdes och vilken precision, återkallande, noggrannhet och F1-index uppnåddes med modellen för maskininlärningsfelsdetektering vid användning av två olika loggdatamängder, en från OpenStack och en annan från Hadoop Distributed File System. Resultaten visade att DeepLog presterade bättre när man använde OpenStack-datamängd genom att uppnå höga resultat för alla index, särskilt recallsindex på cirka 90% som minimerade falska negativa förutsägelser, vilket är viktigt vid loggfelsdetektering. När DeepLog användes med HDFS-datamängd förbättrades körningstiden något men noggrannheten och recall av modellen tappades. Framtida arbete inkluderar att försöka och testa modellen med andra loggdatamängder eller andra ML-modeller för upptäckning av loggfel. / During the last years machine learning was gaining more and more popularity in the society. It is widely implemented in many fields of computer science, e.g. recognition of speech, video, objects, sentiment analysis, etc. Additionally, modern computer systems and programs generate large files with log data through their execution. These log files contain usually immense amount of data, which is a struggle for processing it manually. Thus, using machine learning techniques in the analysis of log data for detection of anomaly behavior is of a high interest for achieving scalable maintaining of the systems. The purpose of this work was to look into available prominent approaches of implementing machine learning for log fault detection and evaluate one of them. The paper focused on evaluating DeepLog artificial neural network that incorporates Long short-term memory. The evaluation included measuring the execution time needed and what precision, recall, accuracy and F1-index were achieved by the machine learning fault detection model when using two different log datasets, one from OpenStack and another from Hadoop Distributed File System. The results showed that DeepLog performed better when using OpenStack dataset by achieving high results for all indexes, especially the recall index of around 90%, minimizing the false negative predictions, which is important in the log fault detection. When using DeepLog with HDFS dataset the execution time was slightly improved but the accuracy and recall of the model were dropped. Future works includes trying another log datasets or ML models for log fault detection.
|
6 |
Cooperative Modular Neural Networks for Artificial Intelligence in Games : A Comparison with A Monolithic Neural Network Regarding Technical Aspects and The Player ExperienceHögstedt, Emil, Ødegård, Ove January 2023 (has links)
Recent years have seen multiple machine-learning research projects concerning agents in video games. Yet, there is a disjoint between this academic research and the video game industry, evidenced by the fact that game developers still hesitate to use neural networks (NN) due to lack of clarity and control. Particularly for denizens, which are agents that take specific roles and have highly specialized purposes. Many denizens share features that could be exploited to reduce the hardship of training different types of denizens. A Cooperative Modular Neural Network (CMNN) seeks to provide more clarity and control than a monolithic neural network (Mono-NN) by breaking down the problem into specialist modules that exploit common denizen features and fuse them via a main network. The objective is to compare the CMNN and the Mono-NN in technical performance, and to compare the player satisfaction of playing against the two approaches in the same video game, Star Fetchers. The game was chosen because it belongs to the established genre of two-dimensional platforming games, providing a simple context. All NNs were implemented using the library TorchSharp. The approaches were compared on frame time, memory usage, and training time. A User Study of 58 participants' opinions regarding engagement and denizen movement was conducted and the results were analyzed for any statistical significance. The CMNN approach was shown to perform worse in frame time and memory usage. However, through parallelization of the modules, and by sharing modules between CMNNs, the gap can be bridged slightly. The training time was shown to be worse for the CMNN compared to the Mono-NN. Backward propagation, however, was faster for the CMNN, counterbalancing the time lost during forward propagation at shorter episode lengths. The CMNN also produces a minimum viable denizen in fewer epochs, significantly reducing the real-time spent training the denizen. The results of the User Study was inconclusive due to statistical insignificance. The CMNN is a viable competitor to Mono-NNs, at least in some aspects. Training is still costly in terms of time and effort and the complexity concerning hyperparameters and intelligent choice of reward function remains. However, the modules provide out-of-the-box networks that can be reused. More work within the area of cooperative modular methods is needed before the video game industry has any reason to make the change over from other time-proven methods. / De senaste åren har flera maskininlärningsforskningsprojekt om agenter i datorspel genomförts. Trots detta finns en klyfta mellan denna akademiska forskning och datorspelsindustrin. Detta tydliggörs av det faktum att spelutvecklare fortfarande tvekar att använda neurala nätverk på grund av bristande klarhet och kontroll. Detta gäller särskilt "invånare", agenter som har specifika roller och specialiserade syften. Många invånare delar egenskaper som skulle kunna utnyttjas för att minska svårigheten med att träna olika typer av invånare. Ett Kooperativt Modulärt Neuralt Nätverk (CMNN) strävar efter att ge mer klarhet och kontroll än ett monolitiskt neuralt nätverk (Mono-NN) genom att bryta ned problemet i specialiserade moduler som utnyttjar gemensamma egenskaper hos invånare och förenar dem via ett huvudnätverk. Syftet är att jämföra ett CMNN och ett Mono-NN i teknisk prestanda, och att jämföra användarupplevelsen då användaren spelar mot de två metoderna i samma datorspel, Star Fetchers. Spelet valdes då det tillhör den väletablerade genren av två-dimensionella plattformsspel, vilket ger en simpel kontext för arbetet. Båda neurala nätverken implementerades med biblioteket TorchSharp. Nätverken jämfördes med avseende på tid per bild, minnesanvändning och träningstid. En användarstudie samlade åsikter från 58 deltagare angående spelarens engagemang och invånarnas rörelse, vilket analyserades för eventuella statistiska signifikanser. CMNN presterade sämre med tanke på tid per bild och minnesanvändning. Dock, genom parallellisering och delning av moduler mellan flera CMNN, kan klyftan mellan dem minskas. Träningstiden visade sig vara sämre för CMNN jämfört med Mono-NN. Bakåtpropagering var dock snabbare med CMNN, vilket kompenserar för den tid som förloras under framåtpropagering vid kortare episodlängder. CMNN producerar också en acceptabel invånare på färre epoker, vilket markant minskar den verkliga tiden som spenderas på att träna invånare. Resultaten från användarstudien var inte övertygande på grund av brist på statistisk signifikans. CMNN är ett bra alternativ till Mono-NN, åtminstone med tanke på vissa aspekter. Träningen är fortfarande resurskrävande i form av tid och ansträngning och komplexiteten kring hyperparametrar och intelligent val av belöningsfunktion består. Modulerna tillhandahåller dock färdiga nätverk som kan återanvändas. Det krävs i framtiden mer arbete inom kooperativa och modulära metoder innan datorspelsindustrin har någon anledning att byta över från andra, beprövade metoder.
|
7 |
Aktieprediktion med neurala nätverk : En jämförelse av statistiska modeller, neurala nätverk och kombinerade neurala nätverkOskarsson, Gustav January 2019 (has links)
This study is about prediction of the stockmarket through a comparison of neural networks and statistical models. The study aims to improve the accuracy of stock prediction. Much of the research made on predicting shares deals with statistical models, but also neural networks and then mainly the types RNN and CNN. No research has been done on how these neural networks can be combined, which is why this study aims for this. Tests are made on statistical models, neural networks and combined neural networks to predict stocks at minute level. The result shows that a combination of two neural networks of type RNN gives the best accuracy in the prediction of shares. The accuracy of the predictions increases further if these combined neural networks are trained to predict different time horizons. In addition to tests for accuracy, simulations have also been made which also confirm that there is some possibility to predict shares. Two combined RNNs gave best results, but in the simulations, even CNN made good predictions. One conclusion can be drawn that the stock market is not entirely effective as some opportunity to predict future values exists. Another conclusion is that neural networks are better than statistical models to predict stocks if the neural networks are combined and are of type RNN. / Denna studie behandlar prediktion av aktier genom en jämförelse av neurala nätverk och statistiska modeller. Studien syftar till att förbättra noggrannheten för aktieprediktion. Mycket av den forskning som gjorts om att förutspå aktier behandlar statistiska modeller, men även neurala nätverk och då främst typerna RNN och CNN. Ingen forskning har dock gjorts på hur dessa neurala nätverk kan kombineras, varför denna studie syftar till just detta. Tester är gjorda på statistiska modeller, neurala nätverk och kombinerade neurala nätverk för att förutspå aktier på minutnivå. Resultatet visar att en kombination av två neurala nätverk av typen RNN ger bäst noggrannhet vid prediktion av aktier. Noggrannheten i prediktionerna ökar ytterligare om dessa neurala nätverk tränas för att förutspå olika tidshorisont. Utöver tester för prediktionernas noggrannhet har även simuleringar genomförts som även de bekräftar att viss möjlighet finns att förutspå aktier. Två kombinerade RNN gav bra resultat, men här visade även CNN bra prediktioner. En slutsats kan dras om att aktiemarknaden inte är helt effektiv då viss möjlighet att förutspå framtida värden finns. Ytterligare en slutsats är att neurala nätverk är bättre än statistiska modeller till att förutspå aktier om de neurala nätverken kombineras och är av typen RNN.
|
8 |
Scalable System-Wide Traffic Flow Predictions Using Graph Partitioning and Recurrent Neural NetworksReginbald Ivarsson, Jón January 2018 (has links)
Traffic flow predictions are an important part of an Intelligent Transportation System as the ability to forecast accurately the traffic conditions in a transportation system allows for proactive rather than reactive traffic control. Providing accurate real-time traffic predictions is a challenging problem because of the nonlinear and stochastic features of traffic flow. An increasingly widespread deployment of traffic sensors in a growing transportation system produces greater volume of traffic flow data. This results in problems concerning fast, reliable and scalable traffic predictions.The thesis explores the feasibility of increasing the scalability of real-time traffic predictions by partitioning the transportation system into smaller subsections. This is done by using data collected by Trafikverket from traffic sensors in Stockholm and Gothenburg to construct a traffic sensor graph of the transportation system. In addition, three graph partitioning algorithms are designed to divide the traffic sensor graph according to vehicle travel time. Finally, the produced transportation system partitions are used to train multi-layered long shortterm memory recurrent neural networks for traffic density predictions. Four different types of models are produced and evaluated based on root mean squared error, training time and prediction time, i.e. transportation system model, partitioned transportation models, single sensor models, and overlapping partition models.Results of the thesis show that partitioning a transportation system is a viable solution to produce traffic prediction models as the average prediction accuracy for each traffic sensor across the different types of prediction models are comparable. This solution tackles scalability issues that are caused by increased deployment of traffic sensors to the transportation system. This is done by reducing the number of traffic sensors each prediction model is responsible for which results in less complex models with less amount of input data. A more decentralized and effective solution can be achieved since the models can be distributed to the edge of the transportation system, i.e. near the physical location of the traffic sensors, reducing prediction and response time of the models. / Prognoser för trafikflödet är en viktig del av ett intelligent transportsystem, eftersom möjligheten att prognostisera exakt trafiken i ett transportsystem möjliggör proaktiv snarare än reaktiv trafikstyrning. Att tillhandahålla noggrann trafikprognosen i realtid är ett utmanande problem på grund av de olinjära och stokastiska egenskaperna hos trafikflödet. En alltmer utbredd använding av trafiksensorer i ett växande transportsystem ger större volym av trafikflödesdata. Detta leder till problem med snabba, pålitliga och skalbara trafikprognoser.Avhandlingen undersöker möjligheten att öka skalbarheten hos realtidsprognoser genom att dela transportsystemet i mindre underavsnitt. Detta görs genom att använda data som samlats in av Trafikverket från trafiksensorer i Stockholm och Göteborg för att konstruera en trafiksensor graf för transportsystemet. Dessutom är tre grafpartitioneringsalgoritmer utformade för att dela upp trafiksensor grafen enligt fordonets körtid. Slutligen används de producerade transportsystempartitionerna för att träna multi-layered long short memory neurala nät för förspänning av trafiktäthet. Fyra olika typer av modeller producerades och utvärderades baserat på rotvärdes kvadratfel, träningstid och prediktionstid, d.v.s. transportsystemmodell, partitionerade transportmodeller, enkla sensormodeller och överlappande partitionsmodeller.Resultat av avhandlingen visar att partitionering av ett transportsystem är en genomförbar lösning för att producera trafikprognosmodeller, eftersom den genomsnittliga prognoser noggrannheten för varje trafiksensor över de olika typerna av prediktionsmodeller är jämförbar. Denna lösning tar itu med skalbarhetsproblem som orsakas av ökad användning av trafiksensorer till transportsystemet. Detta görs genom att minska antal trafiksensorer varje trafikprognosmodell är ansvarig för. Det resulterar i mindre komplexa modeller med mindre mängd inmatningsdata. En mer decentraliserad och effektiv lösning kan uppnås eftersom modellerna kan distribueras till transportsystemets kant, d.v.s. nära trafiksensorns fysiska läge, vilket minskar prognosoch responstid för modellerna.
|
9 |
Lung-segmentering : Förbehandling av medicinsk data vid predicering med konvolutionella neurala nätverk / Lung-segmentation : A pre-processing technique for medical data when predicting with convolutional neural networksGustavsson, Robin, Jakobsson, Johan January 2018 (has links)
Svenska socialstyrelsen presenterade år 2017 att lungcancer är den vanligaste cancerrelaterade dödsorsaken bland kvinnor i Sverige och den näst vanligaste bland män. Ett sätt att ta reda på om en patient har lungcancer är att en läkare studerar en tredimensionell-röntgenbild av en patients lungor. För att förebygga misstag som kan orsakas av den mänskliga faktorn är det möjligt att använda datorer och avancerade algoritmer för att upptäcka lungcancer. En nätverksmodell kan tränas att upptäcka detaljer och avvikelser i en lungröntgenbild, denna teknik kallas deep structural learning. Det är både tidskrävande och avancerat att skapa en sådan modell, det är därför viktigt att modellen tränas korrekt. Det finns flera studier som behandlar olika nätverksarkitekturer, däremot inte vad förbehandlingstekniken lung-segmentering kan ha för inverkan på en modell av denna signifikans. Därför ställde vi frågan: hur påverkas accuracy och loss hos en konvolutionell nätverksmodell när lung-segmentering appliceras på modellens tränings- och testdata? För att besvara frågan skapade vi flera modeller som använt, respektive, inte använt lung-segmentering. Modellernas resultat evaluerades och jämfördes, tekniken visade sig motverka överträning. Vi anser att denna studie kan underlätta för framtida forskning inom samma och liknande problemområde. / In the year of 2017 the Swedish social office reported the most common cancer related death amongst women was lung cancer and the second most common amongst men. A way to find out if a patient has lung cancer is for a doctor to study a computed tomography scan of a patients lungs. This introduces the chance for human error and could lead to fatal consequences. To prevent mistakes from happening it is possible to use computers and advanced algorithms for training a network model to detect details and deviations in the scans. This technique is called deep structural learning. It is both time consuming and highly challenging to create such a model. This discloses the importance of decorous training, and a lot of studies cover this subject. What these studies fail to emphasize is the significance of the preprocessing technique called lung segmentation. Therefore we investigated how is the accuracy and loss of a convolutional network model affected when lung segmentation is applied to the model’s training and test data? In this study a number of models were trained and evaluated on data where lung segmentation was applied, in relation to when it was not. The final conclusion of this report shows that the technique counteracts overfitting of a model and we allege that this study can ease further research within the same area of study.
|
10 |
Pre-planning of Individualized Ankle Implants Based on Computed Tomography - Automated Segmentation and Optimization of Acquisition Parameters / Operationsplanering av individuella fotledsimplantat baserat på datortomografi- Automatiserad segmentering och optimering av datortomografibilderEngström Messén, Matilda, Moser, Elvira January 2021 (has links)
The structure of the ankle joint complex creates an ideal balance between mobility and stability, which enables gait. If a lesion emerges in the ankle joint complex, the anatomical structure is altered, which may disturb mobility and stability and cause intense pain. A lesion in the articular cartilage on the talus bone, or a lesion in the subchondral bone of the talar dome, is referred to as an Osteochondral Lesion of the Talus (OLT). Replacing the damaged cartilage or bone with an implant is one of the methods that can be applied to treat OLTs. Episurf Medical develops and produces patient-specific implants (Episealers) along with the necessary associated surgical instruments by, inter alia, creating a corresponding 3D model of the ankle (talus, tibial, and fibula bones) based on either a Magnetic Resonance Imaging (MRI) scan or a Computed Tomography (CT) scan. Presently, the3D models based on MRI scans can be created automatically, but the 3Dmodels based on CT scans must be created manually, which can be very time-demanding. In this thesis project, a U-net based Convolutional Neural Network (CNN) was trained to automatically segment 3D models of ankles based on CT images. Furthermore, in order to optimize the quality of the incoming CT images, this thesis project also consisted of an evaluation of the specified parameters in the Episurf CT talus protocol that is being sent out to the clinics. The performance of the CNN was evaluated using the Dice Coefficient (DC) with five-fold cross-validation. The CNN achieved a mean DC of 0.978±0.009 for the talus bone, 0.779±0.174 for the tibial bone, and 0.938±0.091 for the fibula bone. The values for the talus and fibula bones were satisfactory and comparable to results presented in previous researches; however, due to background artefacts in the images, the DC achieved by the network for the segmentation of the tibial bone was lower than the results presented in previous researches. To correct this, a noise-reducing filter will be implemented. / Fotledens komplexa anatomi ger upphov till en ideal balans mellan rörlighetoch stabilitet, vilket i sin tur möjliggör gång. Fotledens anatomi förändras när en skada uppstår, vilket kan påverka rörligheten och stabiliteten samt orsaka intensiv smärta. En skada i talusbenets ledbrosk eller i det subkondrala benet på talusdomen benämns som en Osteochondral Lesion of the Talus(OLT). En metod att behandla OLTs är att ersätta den del brosk eller bensom är skadat med ett implantat. Episurf Medical utvecklar och producerar individanpassade implantat (Episealers) och tillhörande nödvändiga kirurgiska instrument genom att, bland annat, skapa en motsvarande 3D-modell av fotleden (talus-, tibia- och fibula-benen) baserat på en skanning med antingen magnetisk resonanstomografi (MRI) eller datortomografi (CT). I dagsläget kan de 3D-modeller som baseras på MRI-skanningar skapas automatiskt, medan de 3D-modeller som baseras på CT-skanningar måste skapas manuellt - det senare ofta tidskrävande. I detta examensarbete har ett U-net-baserat Convolutional Neuralt Nätverk (CNN) tränats för att automatiskt kunna segmentera 3D-modeller av fotleder baserat på CT-bilder. Vidare har de speciferade parametrarna i Episurfs CT-protokoll för fotleden som skickas ut till klinikerna utvärderats, detta för att optimera bildkvaliteten på de CT-bilder som används för implantatspositionering och design. Det tränade nätverkets prestanda utvärderades med hjälp av Dicekoefficienten (DC) med en fem-delad korsvalidering. Nätverket åstadkom engenomsnittlig DC på 0.978±0.009 för talusbenet, 0.779±0.174 för tibiabenet, och 0.938±0.091 för fibulabenet. Värdena för talus och fibula var adekvata och jämförbara med resultaten presenterade i tidigare forskning. På grund av bakgrundsartefakter i bilderna blev den DC som nätverket åstadkom för sin segmentering av tibiabenet lägre än tidigiare forskningsresultat. För att korrigera för bakgrundsartefakterna kommer ett brusreduceringsfilter implementeras
|
Page generated in 0.0667 seconds