• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimized feature selection using NeuroEvolution of Augmenting Topologies (NEAT)

Sohangir, Soroosh 01 December 2011 (has links)
AN ABSTRACT OF THE THESIS OF SOROOSH SOHANGIR, for the MASTER OF SCIENCE degree in COMPUTER SCIENCE, presented on 9 th November 2011, at Southern Illinois University Carbondale. TITLE: OPTIMIZED FEATURE SELECTION USING NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) MAJOR PROFESSOR: Dr. Shahram Rahimi Feature selection using the NeuroEvolution of Augmenting Topologies (NEAT) is a new approach. In this thesis an investigation had been carried out for implementation based on optimization of the network topology and protecting innovation through the speciation which is similar to what happens in nature. The NEAT is implemented through the JNEAT package and Utans method for feature selection is deployed. The performance of this novel method is compared with feature selection using Multilayer Perceptron (MLP) where Belue, Tekto, and Utans feature selection methods is adopted. According to unveiled data from this thesis the number of species, the training, accuracy and number of hidden neurons are notably improved as compared with conventional networks. For instance the time is reduced by factor of three.
2

Competitive multi-agent search

Bahceci, Erkin 09 February 2015 (has links)
While evolutionary computation is well suited for automatic discovery in engineering, it can also be used to gain insight into how humans and organizations could perform more effectively. Using a real-world problem of innovation search in organizations as the motivating example, this dissertation formalizes human creative problem solving as competitive multi-agent search. It differs from existing single-agent and team-search problems in that the agents interact through knowledge of other agents' searches and through the dynamic changes in the search landscape caused by these searches. The main hypothesis is that evolutionary computation can be used to discover effective strategies for competitive multi-agent search. This hypothesis is verified in experiments using an abstract domain based on the NK model, i.e. partially correlated and tunably rugged fitness landscapes, and a concrete domain in the form of a social innovation game. In both domains, different specialized strategies are evolved for each different competitive environment, and also strategies that generalize across environments. Strategies evolved in the abstract domain are more effective and more complex than hand-designed strategies and one based on traditional tree search. Using a novel spherical visualization of the fitness landscapes of the abstract domain, insight is gained about how successful strategies work, e.g. by tracking positive changes in the landscape. In the concrete game domain, human players were modeled using backpropagation, and used as opponents to create environments for evolution. Evolved strategies scored significantly higher than the human models by using a different proportion of actions, providing insights into how performance could be improved in social innovation domains. The work thus provides a possible framework for studying various human creative activities as competitive multi-agent search in the future. / text
3

Novelty-assisted Interactive Evolution Of Control Behaviors

Woolley, Brian G 01 January 2012 (has links)
The field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact they often do not. The consequence is that while solutions may exist, searching for such objectives may not discover them. This problem with objectives is demonstrated through an experiment in this dissertation that compares how images discovered serendipitously during interactive evolution in an online system called Picbreeder cannot be rediscovered when they become the final objective of the very same algorithm that originally evolved them. This negative result demonstrates that pursuing an objective limits evolution by selecting offspring only based on the final objective. Furthermore, even when high fitness is achieved, the experimental results suggest that the resulting solutions are typically brittle, piecewise representations that only perform well by exploiting idiosyncratic features in the target. In response to this problem, the dissertation next highlights the importance of leveraging human insight during search as an alternative to articulating explicit objectives. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with a method called novelty search for the first time to facilitate the serendipitous discovery of agent behaviors. iii In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can then request that the next generation be filled with novel descendants, as opposed to only the direct descendants of typical IEC. The result of such an approach, unconstrained by a priori objectives, is that it traverses key stepping stones that ultimately accumulate meaningful domain knowledge. To establishes this new evolutionary approach based on the serendipitous discovery of key stepping stones during evolution, this dissertation consists of four key contributions: (1) The first contribution establishes the deleterious effects of a priori objectives on evolution. The second (2) introduces the NA-IEC approach as an alternative to traditional objective-based approaches. The third (3) is a proof-of-concept that demonstrates how combining human insight with novelty search finds solutions significantly faster and at lower genomic complexities than fully-automated processes, including pure novelty search, suggesting an important role for human users in the search for solutions. Finally, (4) the NA-IEC approach is applied in a challenge domain wherein leveraging human intuition and domain knowledge accelerates the evolution of solutions for the nontrivial octopus-arm control task. The culmination of these contributions demonstrates the importance of incorporating human insights into simulated evolution as a means to discovering better solutions more rapidly than traditional approaches.
4

Evolution Through The Search For Novelty

Lehman, Joel 01 January 2012 (has links)
I present a new approach to evolutionary search called novelty search, wherein only behavioral novelty is rewarded, thereby abstracting evolution as a search for novel forms. This new approach contrasts with the traditional approach of rewarding progress towards the objective through an objective function. Although they are designed to light a path to the objective, objective functions can instead deceive search into converging to dead ends called local optima. As a significant problem in evolutionary computation, deception has inspired many techniques designed to mitigate it. However, nearly all such methods are still ultimately susceptible to deceptive local optima because they still measure progress with respect to the objective, which this dissertation will show is often a broken compass. Furthermore, although novelty search completely abandons the objective, it counterintuitively often outperforms methods that search directly for the objective in deceptive tasks and can induce evolutionary dynamics closer in spirit to natural evolution. The main contributions are to (1) introduce novelty search, an example of an effective search method that is not guided by actively measuring or encouraging objective progress; (2) validate novelty search by applying it to biped locomotion; (3) demonstrate novelty search’s benefits for evolvability (i.e. the ability of an organism to further evolve) in a variety of domains; (4) introduce an extension of novelty search called minimal criteria novelty search that brings a new abstraction of natural evolution to evolutionary computation (i.e. evolution as a search for many ways of iii meeting the minimal criteria of life); (5) present a second extension of novelty search called novelty search with local competition that abstracts evolution instead as a process driven towards diversity with competition playing a subservient role; and (6) evolve a diversity of functional virtual creatures in a single run as a culminating application of novelty search with local competition. Overall these contributions establish novelty search as an important new research direction for the field of evolutionary computation.
5

Functional Scaffolding for Musical Composition: A New Approach in Computer-Assisted Music Composition

Hoover, Amy K. 01 January 2014 (has links)
While it is important for systems intended to enhance musical creativity to define and explore musical ideas conceived by individual users, many limit musical freedom by focusing on maintaining musical structure, thereby impeding the user's freedom to explore his or her individual style. This dissertation presents a comprehensive body of work that introduces a new musical representation that allows users to explore a space of musical rules that are created from their own melodies. This representation, called functional scaffolding for musical composition (FSMC), exploits a simple yet powerful property of multipart compositions: The pattern of notes and rhythms in different instrumental parts of the same song are functionally related. That is, in principle, one part can be expressed as a function of another. Music in FSMC is represented accordingly as a functional relationship between an existing human composition, or scaffold, and an additional generated voice. This relationship is encoded by a type of artificial neural network called a compositional pattern producing network (CPPN). A human user without any musical expertise can then explore how these additional generated voices should relate to the scaffold through an interactive evolutionary process akin to animal breeding. The utility of this insight is validated by two implementations of FSMC called NEAT Drummer and MaestroGenesis, that respectively help users tailor drum patterns and complete multipart arrangements from as little as a single original monophonic track. The five major contributions of this work address the overarching hypothesis in this dissertation that functional relationships alone, rather than specialized music theory, are sufficient for generating plausible additional voices. First, to validate FSMC and determine whether plausible generated voices result from the human-composed scaffold or intrinsic properties of the CPPN, drum patterns are created with NEAT Drummer to accompany several different polyphonic pieces. Extending the FSMC approach to generate pitched voices, the second contribution reinforces the importance of functional transformations through quality assessments that indicate that some partially FSMC-generated pieces are indistinguishable from those that are fully human. While the third contribution focuses on constructing and exploring a space of plausible voices with MaestroGenesis, the fourth presents results from a two-year study where students discuss their creative experience with the program. Finally, the fifth contribution is a plugin for MaestroGenesis called MaestroGenesis Voice (MG-V) that provides users a more natural way to incorporate MaestroGenesis in their creative endeavors by allowing scaffold creation through the human voice. Together, the chapters in this dissertation constitute a comprehensive approach to assisted music generation, enabling creativity without the need for musical expertise.
6

Neat drummer : computer-generated drum tracks

Hoover, Amy K. 01 January 2008 (has links)
Computer-generated music composition programs have yet to produce creative, natural sounding music. To date, most approaches constrain the search space heuristically while ignoring the inherent structure of music over time. To address this problem, this thesis introduces NEAT Drummer, which evolves a special kind of artificial neural network (ANN) called compositional pattern producing networks (CPPNs) with the NeuroEvolution of Augmenting Topologies (NEAT) method for evolving increasingly complex structures. CPPNs in NEAT Drummer input existing human compositions and output an accompanying drum track. The existing musical parts form a scaffold i.e. support structure, for the drum pattern outputs, thereby exploiting the functional relationship of drums to musical parts (e.g. to lead guitar, bru:is, etc.) The results are convincing drum patterns that follow the contours of the original song, validating a new approach to computergenerated music composition.

Page generated in 0.1941 seconds