• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 21
  • 18
  • 16
  • 16
  • 16
  • 15
  • 13
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Emerging role of LRRK2 in human neural progenitor cell cycle progression, survival and differentiation

Milosevic, Javorina, Schwarz, Sigrid C., Ogunlade, Vera, Meyer, Anne K., Storch, Alexander, Schwarz, Johannes 30 November 2015 (has links)
Despite a comprehensive mapping of the Parkinson's disease (PD)-related mRNA and protein leucine-rich repeat kinase 2 (LRRK2) in the mammalian brain, its physiological function in healthy individuals remains enigmatic. Based on its structural features and kinase properties, LRRK2 may interact with other proteins involved in signalling pathways. Here, we show a widespread LRRK2 mRNA and/or protein expression in expanded or differentiated human mesencephalic neural progenitor cells (hmNPCs) and in post-mortem substantia nigra PD patients. Using small interfering RNA duplexes targeting LRRK2 in hmNPCs following their differentiation into glia and neurons, we observed a reduced number of dopaminergic neurons due to apoptosis in LRRK2 knockdown samples. LRRK2-deficient hmNPCs exhibited elevated cell cycle- and cell death-related markers. In conclusion, a reduction of LRRK2 expression in hmNPCs severely impaired dopaminergic differentiation and/or survival of dopaminergic neurons most likely via preserving or reactivating the cell cycle.
52

A Comparison of Chikungunya Virus Infection, Dissemination, and Cytokine Induction in Human and Murine Macrophages and Characterization of RAG2-/-γc-/- Mice as an Animal Model to Study Neurotropic Chikungunya Disease

Guerrero, Israel 07 April 2020 (has links)
Chikungunya virus (CHIKV) is classified as an alphavirus in the Togaviridae family. This virus is known to rely on Aedes arthropod vectors for its dissemination. Human infection is characterized by rash, high fever, and severe chronic polyarthritis that can last for years. Recently, efforts in developing animal models have been made in an attempt to better understand CHIKV pathogenesis. CHIKV infection starts with a 7 to 10 day long febrile acute phase, in which most of the symptoms occur (rash, fever, and incapacitating pain in joints and muscle). Once the immune system clears most of the viral infection, a chronic phase starts in as many as 70% of the infected patients. Long term virus-related polyarthralgia is the hallmark of the CHIKV chronic phase. It is believed that CHIKV-infected macrophages infiltrate the joints during the acute phase, and CHIKV infects joint tissue and persists in it. Research into the effects of CHIKV infection in human and murine macrophages revealed that CHIKV-infected human macrophages produce high amounts of virions as well as induce the production of pro-inflammatory cytokines and monocyte recruiting chemokines. This contrasts with murine macrophage infection where low quantities of the virus were detected as well as lower production of pro-inflammatory cytokines. This may contribute to the lack of polyarthritis in murine animal models. Current literature suggests that CHIKV’s viral proteins bind and interact with human host cell machinery promoting viral replication more efficiently in humans than in mice. CHIKV-related neuropathology is not the most common outcome of the disease. However, recent outbreaks suggest that this pathology is becoming more prevalent, affecting as many as 30% of confirmed patients. The role of adaptive and innate immunity in CHIKV disease amelioration has been extensively, yet separately, explored. A RAG2-/-γc-/- Balb/c mouse model was used to study the role of these immune pathways and their associated immune cells in CHIKV infection. The mice in this study developed local arthritis at the site of inoculation as well as showed signs of viral invasion in the brain. This study added to the hypothesis that both innate and adaptive immune responses are necessary to ameliorate the disease and that the lack of adequately matured lymphocytes and STAT6-activation deficient macrophages may result in more severe pathologies.
53

Neuropathologie primärer und sekundärer Mitochondriopathien im Rahmen entzündlicher Muskelerkrankungen: Neuropathologie primärer und sekundärerMitochondriopathien im Rahmen entzündlicherMuskelerkrankungen

Henkes, Greta 10 March 2011 (has links)
Idiopathische Myositiden stellen die größte Gruppe der erworbenen Myopathien im Erwachsenenalter dar. Die Pathogenese dieser Erkrankungen ist sehr heterogen und nicht in allen Einzelheiten geklärt. Das Auftreten von mitochondrialen Veränderungen und mtDNADeletionen in idiopathischen Myositiden und deren pathophysiologische Bedeutung ist in der Literatur ein kontrovers diskutiertes Thema. Nach der Präsentation des bekannten Wissens über diese Erkrankungen wird in vorliegender Arbeit dieses Thema anhand lichtmikroskopischer Methoden unter Anwendung histologischer Spezialmethoden an Muskelbiopsien von 98 Patienten untersucht. Ziel der Arbeit ist es, mit verschiedenen histologischen Färbemethoden Hinweise für Mitochondrien-Alterationen und feinstrukturelle Charakteristika von primären Mitochondrialen Myopathien in idiopathischen Myositiden zu detektieren. Ein besonderer Schwerpunkt liegt auf der Anwendung einer neuen immunhistochemischen Methode unter Anwendung eines monoklonalen antimitochondrialen Antikörpers. Es wird der Fall eines Mädchens mit muskeldystrophischer Symptomatik dargestellt, dessen Muskelbiopsie im Alter von 7 Jahren die myohistologische Diagnose einer juvenilen Dermatomyositis und Hinweise auf eine mitochondriale Dysfunktion ergab. Die Ergebnisse der immunhistochemischen Methode korrelieren gut mit anderen bekannten mitochondrialen Färbungen, sind sensitiver und stellen möglicherweise eine gute Ergänzung zu den bekannten mitochondrialen Markern und Färbungen dar. Die beobachteten mitochondrialen Dysfunktionen sprechen für die gestörte Mitochondrienfunktion und eine früh im Krankheitsverlauf, am ehesten sekundäre, Beteiligung der Mitochondrien im Krankheitsprozess dieser primär nicht mitochondrialen Erkrankungen:INHALTSVERZEICHNIS ............................................................................................. I Abkürzungsverzeichnis .......................................................................................................................................iii 1 EINLEITUNG....................................................................................................... 1 1.1 Einführung ...................................................................................................................................................... 1 1.2 Aufbau und Funktion der Skelettmuskulatur............................................................................................... 1 1.3 Die Mitochondrien.......................................................................................................................................... 6 1.4 Erkrankungen der Skelettmuskulatur......................................................................................................... 11 1.4.1 Diagnostik der Skelettmuskelerkrankungen............................................................................................. 11 1.4.2 Entzündliche Muskelerkrankungen.......................................................................................................... 13 1.4.2.1 Polymyositis.................................................................................................................................... 15 1.4.2.2 Dermatomyositis .............................................................................................................................. 18 1.4.2.3 Einschlusskörpermyositis................................................................................................................ 21 1.4.3 Mitochondriale Myopathien..................................................................................................................... 23 1.5 Die Muskelbiopsie......................................................................................................................................... 26 1.6 Die Lichtmikroskopie der Skelettmuskulatur ............................................................................................. 28 1.6.1. Die Enzymhistochemie ........................................................................................................................... 28 1.6.2. Grundlagen der Immunhistochemie ........................................................................................................ 31 1.7 Die Elektronenmikroskopie .......................................................................................................................... 35 2 MATERIAL UND METHODEN .......................................................................... 36 2.1 Patienten........................................................................................................................................................ 36 2.1.1 Das Patientenkollektiv ............................................................................................................................. 36 2.1.2 Besonderer Fall einer Patientin mit juveniler Dermatomyositis............................................................... 38 2.2 Methoden....................................................................................................................................................... 44 2.2.1 Die Lichtmikroskopie .............................................................................................................................. 44 2.2.1.1 Enzymhistochemie ........................................................................................................................... 46 2.2.1.2 Immunhistochemie ........................................................................................................................... 49 2.2.2 Die Elektronenmikroskopie ..................................................................................................................... 54 2.3 Statistische Methoden .................................................................................................................................. 54 3 ERGEBNISSE ....................................................................................................... 56 3.1 Ergebnisse der Lichtmikroskopie................................................................................................................ 56 3.1.1 Ergebnisse der Enzymhistochemie........................................................................................................... 56 3.1.2 Ergebnisse der Immunhistochemie .......................................................................................................... 62 3.1.3 Korrelation der Ergebnisse der Enzymhistochemie und Immunhistochemie ........................................... 70 Inhaltsverzeichnis ii 3.2 Ergebnisse der Elektronenmikroskopie....................................................................................................... 73 4 DISKUSSION .................................................................................................... 76 4. 1 Lichtmikroskopie......................................................................................................................................... 76 4.1.1 Enzymhistochemie .................................................................................................................................. 76 4.1.1.1 Cytochrom-c-Oxidase ...................................................................................................................... 76 4.1.1.2 NADH............................................................................................................................................. 80 4.1.1.3 SDH ................................................................................................................................................ 80 4.1.1.4. Engel .............................................................................................................................................. 81 4.1.2 Immunhistochemie.................................................................................................................................. 84 4.2 Elektronenmikroskopie ................................................................................................................................ 89 4.3 Besonderer Fall einer Patientin mit juveniler Dermatomyositis ............................................................... 90 4.4 Effekte des Alterns auf die Mitochondrien und deren klinische Bedeutung ............................................ 93 4.5 Die Rolle der Mitochondrien in der Pathogenese der entzündlichen Muskelerkrankungen .................. 94 5 ZUSAMMENFASSUNG..................................................................................... 98 6 QUELLENANGABEN...................................................................................... 102 6.1 Literaturverzeichnis........................................................................................................................... 102 6.2 Abbildungsverzeichnis ............................................................................................................................... 109 6.3 Tabellenverzeichnis .................................................................................................................................... 110 7 DANKSAGUNG................................................................................................... 111 8 LEBENSLAUF..................................................................................................... 112 9 ERKLÄRUNG ÜBER DIE EIGENSTÄNDIGE ABFASSUNG DER ARBEIT ... 113
54

Focusing on Symptoms Rather Than Diagnoses in Brain Dysfunction: Conscious and Nonconscious Expression in Impulsiveness and Decision-Making

Palomo, Tomas, Beninger, Richard J., Kostrzewa, Richard M., Archer, Trevor 01 March 2008 (has links)
Symptoms and syndromes in neuropathology, whether expressed in conscious or nonconscious behaviour, remain imbedded in often complex diagnostic categories. Symptom-based strategies for studying brain disease states are driven by assessments of presenting symptoms, signs, assay results, neuroimages and biomarkers. In the present account, symptom-based strategies are contrasted with existing diagnostic classifications. Topics include brain areas and regional circuitry underlying decision-making and impulsiveness, and motor and learned expressions of explicit and implicit processes. In three self-report studies on young adult and adolescent healthy individuals, it was observed that linear regression analyses between positive and negative affect, self-esteem, four different types of situational motivation: intrinsic, identified regulation, extrinsic regulation and amotivation, and impulsiveness predicted significant associations between impulsiveness with negative affect and lack of motivation (i.e., amotivation) and internal locus of control, on the one hand, and non-impulsiveness with positive affect, self-esteem, and high motivation (i.e., intrinsic motivation and identified regulation), on the other. Although presymptomatic, these cognitive- affective characterizations illustrate individuals' choice behaviour in appraisals of situations, events and proclivities essentially of distal perspective. Neuropathological expressions provide the proximal realities of symptoms and syndromes with underlying dysfunctionality of brain regions, circuits and molecular mechanisms.
55

Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism

Neill, Joanna C., Barnes, Samuel, Cook, Samantha, Grayson, Ben, Idris, Nagi F., McLean, Samantha L., Snigdha, S., Rajagopal, Lakshmi, Harte, Michael K. 10 August 2010 (has links)
Yes / Cognitive deficits in schizophrenia remain an unmet clinical need. Improved understanding of the neuro- and psychopathology of these deficits depends on the availability of carefully validated animal models which will assist the development of novel therapies. There is much evidence that at least some of the pathology and symptomatology (particularly cognitive and negative symptoms) of schizophrenia results from a dysfunction of the glutamatergic system which may be modelled in animals through the use of NMDA receptor antagonists. The current review examines the validity of this model in rodents. We review the ability of acute and sub-chronic treatment with three non-competitive NMDA antagonists; phencyclidine (PCP), ketamine and MK801 (dizocilpine) to produce cognitive deficits of relevance to schizophrenia in rodents and their subsequent reversal by first- and second-generation antipsychotic drugs. Effects of NMDA receptor antagonists on the performance of rodents in behavioural tests assessing the various domains of cognition and negative symptoms are examined: novel object recognition for visual memory, reversal learning and attentional set shifting for problem solving and reasoning, 5-Choice Serial Reaction Time for attention and speed of processing; in addition to effects on social behaviour and neuropathology. The evidence strongly supports the use of NMDA receptor antagonists to model cognitive deficit and negative symptoms of schizophrenia as well as certain pathological disturbances seen in the illness. This will facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of cognitive deficits and negative symptoms in schizophrenia.
56

Integrative Approaches to Evaluate Gliosis in Pediatric Neuropathology

Blackburn, Jessica Ann 10 November 2022 (has links)
No description available.
57

D-amino acid oxidase, D-serine and the dopamine system : their interactions and implications for schizophrenia

Betts, Jill Frances January 2012 (has links)
D-amino acid oxidase (DAO) is a flavin-dependent enzyme that is expressed in the mammalian brain. It is the metabolising enzyme of several D-amino acids, including D serine, which is an endogenous agonist at the glycine co-agonist site of the glutamatergic NMDA receptor. As such, regulation of D serine levels in the brain by DAO may indirectly modulate the activity of NMDA receptors. The expression and activity of DAO have been reported to be increased in schizophrenia. It has been identified as a putative susceptibility gene for the disorder, and as a potential therapeutic target. This thesis explored three aspects of the interface between DAO and the DA system. First, the expression of DA was investigated in the ventral tegmental area (VTA), the source of the dopaminergic mesocortical pathway. Traditionally, DAO was considered to be an enzyme confined to the hindbrain and to glia, but more recent studies have reported its expression in additional brain regions, and also in neurons. DAO mRNA and protein was found to be expressed in the VTA, and was present in both neurons and glia in this region, whereas in the cerebellum, DAO expression appeared solely glial. DA output from the VTA is regulated by NMDA receptors, and hence expression of DAO in the VTA suggests that it may serve a role in modulating cortical DA via regulation of D serine levels and NMDA receptor function. The second part of this thesis investigated the effects of DAO inhibition and D serine administration on DA levels in the prefrontal cortex (PFC) using in vivo microdialysis. Systemic DAO inhibition and D serine administration resulted in increases in extracellular levels of DA metabolites in the PFC, despite no detectable change in DA. Similarly, DA metabolites in the PFC increased after local application of D serine to the VTA, but no change was detected in DA. However, local DAO inhibition in the VTA resulted in increased levels of both DA and its metabolites, and DAO inhibition combined with D serine administration also produced increases in DA. This suggested that DAO and its regulation of D-serine levels may serve to indirectly modulate mesocortical DA function, and this may be mediated via the VTA. This notion was supported in the final section of this thesis, in which the expression of three DA genes was measured in the PFC of a novel line of DAO knockout mice. In this pilot study, there was evidence for an increase in Comt and Drd2 mRNAs in the knockout mice. As such, constitutive abolition of DAO activity may also alter mesocortical DA function. These studies provide new insights into the presence and role of DAO beyond the hindbrain, and point to a potentially important physiological function in modulating the activity of the mesocortical DA system via the VTA. This could be therapeutically relevant in the context of elevating cortical DA in the treatment of schizophrenia, and may provide supporting evidence for the clinical use of DAO inhibitors.
58

A molecular, anatomical and developmental account of copine-6 protein expression in the rodent brain

Faram, Ruth Helen January 2013 (has links)
This thesis describes the developmental expression and anatomical distribution of Copine-6, a neuron specific member of the Copine family of calcium-dependent phospholipid-binding proteins, in rodent brain. A polyclonal antibody targeting the full Copine-6 sequence has been characterised prior to its employment for the immunohistochemical analysis of rodent embryonic and adult brain tissue. Several different Copine-6 labelled neuron populations in the neocortex, hippocampus and olfactory bulbs were discovered, and one of these with an unusual ‘spiny’ morphology in the adult rodent corpus callosum, bordering the neurogenic subventricular zone and rostral migratory stream, was studied in detail. A full molecular characterisation of these Copine-6 ‘spiny’ neurons showed that these cells are mature, GABAergic, axonless interneurons with putative synaptic communication, unusual for their location in the white matter close to the region of adult neurogenesis. A full bromodeoxyuridine (BrdU) birth-dating analysis was performed, which indicated an early embryonic birthdate for the Copine-6 spiny cells. This timeframe is typical of cortical GABAergic interneurons suggesting that their unusual positioning is programmed from embryogenesis. Furthermore, electron microscopic analysis of these Copine-6 interneurons in Chapter 5 confirms that indeed these cells contain vesicles and are synaptically integrated as postsynaptic recipients. The presence of vesicles in the architecturally dendritic processes is suggestive of dendro-dendritic signalling by these cells. Observations from electron microscopic nanoparticle labelling also showed that the Copine-6 protein is restricted to the plasma membrane, smooth endoplasmic reticulum, and multi-vesicular bodies. These embryonically generated Copine-6 labelled axonless interneurons are a novel neuron population in the corpus callosum, and the presence of vesicles in the dendritic processes of these cells suggests that they might have a novel communication mechanism.
59

Selective permeabilisation of the blood-brain barrier at sites of metastasis

Connell, John J. January 2014 (has links)
Over one in five cancer patients will develop brain metastases and prognosis remains poor. Effective chemotherapeutics for primary systemic tumours have limited access to brain metastases owing to the blood-brain barrier (BBB). The aim of this study was to develop a strategy for specifically permeabilising the BBB at sites of cerebral metastases. Tumour necrosis factor was injected intravenously into mouse models of haematogenously induced brain metastasis. BBB permeability was assessed through histology and in vivo MRI and SPECT. Tumour burden and neuroinflammation were assessed after injection of TNF with Caelyx or a novel therapeutic. Mechanism of permeabilisation was investigated through histology and receptor-specific agonist antibodies. Administration of TNF dose-dependently permeabilised the BBB to exogenous tracers selectively at sites of brain metastasis, with peak effect after six hours. Metastasis-specific uptake of radiolabelled trastuzumab was also demonstrated following systemic cytokine administration. Administration of liposomal doxorubicin formulations in conjunction with TNF reduced tumour burden and mean metastasis size. Localised expression of TNFR1 was evident on the vascular endothelium associated with brain metastases. Human brain metastases displayed a similar TNF receptor profile compared to the mouse model. These findings describe a new approach to selectively permeabilise the BBB at sites of brain metastases, thereby enabling detection of currently invisible micrometastases and facilitating tumour-specific access of chemotherapeutic agents. We hypothesize that this permeabilisation works primarily though TNFR1 activation and, owing to the similar TNFR1 expression profiles in mouse models and human condition, the strategy has the potential for clinical translation.
60

Elucidating the role of GBA in the pathology of Parkinson's disease using patient derived dopaminergic neurons differentiated from induced pluripotent stem cells

Ribeiro Fernandes, Hugo José January 2014 (has links)
Heterozygous mutations in the glucocerebrosidase (GBA) gene represent the most common risk factor for Parkinson’s disease (PD), a disease in which midbrain dopaminergic neurons are preferentially vulnerable. However, the mechanisms underlying this association are still unknown, mostly due to the lack of an appropriate model of study. In this thesis, we aimed at elucidating the role of heterozygous GBA mutations in PD using a specific human induced pluripotent stem cell (hiPSC)-based model of disease. First we developed a protocol for the efficient differentiation of hiPSCs into dopaminergic cultures, and extensively characterized the derived dopaminergic neurons which expressed multiple midbrain relevant markers and produced dopamine. Next we screened a clinical cohort of PD patients to identify carriers of GBA mutations of interest. Using for the first time hiPSCs generated from PD patients heterozygous for a GBA mutation (together with idiopathic cases and control individuals) we were able to efficiently derive dopaminergic cultures and identify relevant disease mechanisms. Upon differentiation into dopaminergic neuronal cultures, we observed retention of mutant glucocerebrosidase (GCase) protein in the endoplasmic reticulum (ER) with no change in protein levels, leading to upregulation of ER stress machinery and resulting in increased autophagic demand. At the lysosomal level, we found a reduction of GCase activity in dopaminergic neuronal cultures, and the enlargement of the lysosomal compartment in identified dopaminergic neurons suggesting a decreased capacity for protein clearance. Together, these perturbations of cellular homeostasis resulted in increased release of α-synuclein and could likely represent critical early cellular phenotypes of Parkinson's disease and explain the high risk of heterozygous GBA mutations for PD.

Page generated in 0.0534 seconds