• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 45
  • 39
  • 27
  • 3
  • Tagged with
  • 168
  • 60
  • 59
  • 58
  • 39
  • 39
  • 29
  • 29
  • 29
  • 20
  • 20
  • 16
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Clinical contribution to the study of slow wave sleep in chronic fatigue

Neu, Daniel 30 May 2018 (has links)
Objectives: To investigate slow wave sleep (SWS) spectral power proportions in distinct clinical conditions sharing non-restorative sleep and fatigue complaints without excessive daytime sleepiness (EDS), namely the Chronic Fatigue Syndrome (CFS) and Primary Insomnia (PI). Impaired sleep homeostasis has been suspected in both CFS and PI. Methods: We compared perceived sleep quality, fatigue and sleepiness symptom-intensities, polysomnography (PSG) and SWS spectral power distributions of drug-free CFS and PI patients without comorbid sleep or mental disorders, with a good sleeper control group.Results: Higher fatigue without EDS and impaired perceived sleep quality were confirmed in both patient groups. PSG mainly differed in sleep fragmentation and SWS durations. Spectral analysis revealed a similar decrease in central ultra slow power (0.3-0.79Hz) proportion during SWS for both CFS and PI and an increase in frontal power proportions of faster frequencies during SWS in PI only. The latter was correlated to affective symptoms whereas lower central ultra slow power proportions were related to fatigue severity and sleep quality impairment. Conclusions: In combination with normal (PI) or even increased SWS durations (CFS), we found consistent evidence for lower proportions of slow oscillations during SWS in PI and CFS. Significance:Observing normal or increased SWS durations but lower proportions of ultra slow power, our findings suggest a possible quantitative compensation of altered homeostatic regulation. / Doctorat en Sciences de la motricité / info:eu-repo/semantics/nonPublished
22

Impact de l'activité épileptique interictale sur le traitement cognitif: approche neurophysiologique et comportementale

Galer, Sophie January 2013 (has links)
Doctorat en Sciences psychologiques et de l'éducation / info:eu-repo/semantics/nonPublished
23

Genetic Intervention in Sensory Systems of a Fly / Genetische Intervention in sensorischen Systemen einer Fliege

Keller, Andreas January 2002 (has links) (PDF)
Die vorliegende Arbeit vergleicht Transgene, die in Drosophila Neuronen exprimiert wurden, um diese abzutöten oder zu blockieren. Tetanus Neurotoxin erwies sich als sehr effizient, um chemische Synapsen zu blockieren. Synapsen, die aus einer chemischen und einer elektrischen Komponente bestehen, ließen sich dagegen mit einem ektopisch exprimierten humanen Kalium-Kanal zuverlässiger ausschalten. Es wurden drei Möglichkeiten verglichen, eine zeitliche Kontrolle über die Funktion von Neuronen zu erlangen. Keines der getesteten Systeme erwies sich als universell anwendbar, aber die durch Rekombination induzierte Tetanus Neurotoxin Expression ist ein vielversprechender Ansatz. Die aus dieser vergleichenden methodischen Studie gewonnenen Ergebnisse wurden angewendet, um die Rolle von Neuronen in sensorischen Systemen bei der Verarbeitung verschiedener sensorischer Informationen zu untersuchen. Chemische und mechanische Rezeptorneuronen konnten den olfaktorisch gesteuerten Verhaltensweisen beziehungsweise den lokomotorischen Leistungen, denen sie zu Grunde liegen, zugeordnet werden. Hauptthema der Arbeit ist die Suche nach Neuronen, die an der Bewegungsdetektion im visuellen System beteiligt sind. Dabei zeigte sich, daß weder L2 noch L4 Neuronen im ersten visuellen Neuropil essentiell für die Detektion von Bewegung sind. Vielmehr deuten die Ergebnisse darauf hin, daß die Bewegungsdetektion über das Netzwerk der amacrinen Zellen (a) erfolgt. Die für vertikale Bewegung sensitiven VS Zellen in der Lobula Platte erwiesen sich als nicht notwendig für die Verhaltensreaktionen auf vertikale Bewegungsreize. Daraus folgt auch, daß in der Strukturmutante optomotor blind das Fehlen der VS Zellen nicht ursächlich für die stark eingeschränkten Reaktionen auf vertikale Bewegung ist. Ein anderer Defekt in optomotor blind muß dafür verantwortlich sein. Die Arbeit zeigt das große Potential der beschriebenen Methoden zur Untersuchung der Informationsverarbeitung im Nervensystem von Drosophila. Einzelne Neuronengruppen konnten komplexen Verhaltensweisen zugeordnet werden und Theorien über die Informationsverarbeitung konnten in Verhaltensexperimenten mit transgenen Fliegen getestet werden. Eine weitere Verfeinerung der Methodik zur genetischen Intervention wird das Drosophila Gehirn zu einem noch besseren Modell für die Informationsverarbeitung in Nervensystemen machen. / Different transgenes that can be expressed in neurons to kill or block them were compared. Tetanus neurotoxin blocked chemical synapses very efficiently. Synapses consisting of a chemical and an electrical component were blocked more reliably by expressing a human inwardly rectifying potassium channel. To gain temporal control over neuronal function, three genetic tools have been investigated. None of the systems is without drawbacks, however, the recombination induced tetanus neurotoxin expression is a promising approach. The knowledge gained from the comparative methodological study was used to investigate the role of neurons in sensory systems in processing different sensory informations. Receptor neurons sensitive for chemical or mechanical stimuli were correlated to specific olfactory behaviors or locomotor tasks. The main topic of this thesis is the much discussed question of which neurons are involved in motion processing in the visual system of flies. Neither L2 nor L4 neurons in the first visual neuropil are essential for motion-detection. The results indicate that maybe motion is detected by the network of amacrine cells (a). The vertical motion-sensitive VS cells in the lobula plate are not necessary for behavioral responses to vertical motion. This finding implies that the lack of VS cells in the structural mutant optomotor blind is not causally related to the altered responses to motion stimuli. Other abnormalities in optomotor blind are responsible for this behavioral phenotype. This work shows the potential of the described methods in studying information processing in the Drosophila brain. Groups of neurons were correlated to complex behavioral responses and theories about information processing were tested by behavioral experiments with transgenic flies. The refinement of the genetic tools to interfere with neuronal function will make the Drosophila brain an even better model to study information processing in nervous systems.
24

Untersuchung zur phonologischen Defizithypothese bei der Lese-Rechtschreibstörung eine EKP-Studie /

Grünling, Carolin. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Jena.
25

Implication des neurones striatonigraux et striatopallidaux dans l'apprentissage instrumental séquentiel par ciblage optogénétique

Laurent, Muriel 23 February 2016 (has links)
Les circuits neuronaux des noyaux de la base sont impliqués dans la planification et la sélection des mouvements, dans des processus motivationnels et de renforcement, mais aussi dans des fonctions plus cognitives telles que les processus d’apprentissages instrumentaux. Le dysfonctionnement de ces noyaux entraîne des troubles moteurs graves, telles les maladies de Parkinson et Huntington, et des pathologies plus psychiatriques, comme les phénomènes de dépendances aux drogues, le syndrome Gilles de la Tourette ou encore les troubles déficitaires de l’attention avec hyperactivité. Le striatum, structure d’entrée du système des noyaux de la base, est composé en large majorité de neurones de projections GABAergiques épineux de taille moyenne (medium spiny neuron, MSN), qui sont subdivisés en deux populations: les neurones striatonigraux et les neurones striatopallidaux. Ces neurones forment des voies fonctionnelles parallèles et distinctes :celles ci prennent naissance au niveau du striatum après réception de l’information émanant du cortex, puis traversent les autres ganglions de la base (Globus Pallidus, Noyau sous-thalamique, Substance noire), qui ensuite aboutissent sur le thalamus qui retourne l’information traitée aux différentes aires corticales concernées. Ces neurones de projections sont morphologiquement identiques et distribués de manière homogène dans l’ensemble du striatum, rendant difficile leur étude spécifique sans outils génétiques.Dans ce travail, nous avons étudié les rôles respectifs de ces deux populations neuronales dans l’apprentissage instrumental séquentiel par une approche optogénétique. Cette technique permet de contrôler optiquement, à une échelle de temps physiologique et de façon réversible, l’activité d’une population de neurones génétiquement ciblée pendant un comportement. Dans un premier temps, nous avons développé des modèles de souris dans lesquelles chacune de ces deux populations est spécifiquement ciblée au moyen du système Cre/LoxP et à l’aide d’injection stéréotaxique de vecteurs viraux permettant l’expression de canaux photosensibles, comme la Channelrhodopsine-2 (ChR2). Une validation de la fonctionnalité de cette protéine dans ces modèles a d’abord été établie ex vivo par des moyens électrophysiologiques (enregistrement de l’activité des neurones sur tranche de cerveau en survie), puis in vivo, par induction d’un comportement rotatoire caractéristique de l’activation unilatérale de ces populations neuronales.Dans un second temps, ces souris ont été étudiées dans un paradigme comportemental lié au striatum dorsal :l’apprentissage instrumental séquentiel. En effet, l’exécution d’une séquence d’actions dans un ordre bien déterminé est fondamentale pour adopter un comportement adapté. Au cours de l’acquisition d’une nouvelle séquence, chacune de ces deux populations de neurones est activée par optogénétique afin de déterminer leur effet dans cet apprentissage. Nous nous sommes particulièrement intéressés à ces neurones dans le striatum dorsolatéral (DLS), car cette région joue un rôle fondamental dans la formation d’une habitude, et plus particulièrement lors d’un apprentissage séquentiel. Ce travail a pu mettre en évidence l’importante implication respective de ces neurones du DLS lors de l’acquisition d’une séquence puisque nous avons montré que l’activation des neurones striatonigraux facilitait l’apprentissage d’une nouvelle séquence, alors que l’activation des neurones striatopallidaux perturbe cet apprentissage. De plus, nos résultats indiquent que la stimulation optogénétique des neurones striatopallidaux entraîne un déficit à différencier et à associer des actions pour former une unité performante, tandis que l’activation des neurones striatonigraux semble fondamentale pour initier et terminer correctement une séquence. Ces résultats contribuent ainsi à la compréhension du rôle des deux voies principales du striatum dorsolatéral lors d’un apprentissage instrumental séquentiel. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
26

Neurophysiologische Korrelate der Verarbeitung von Gesichtern und emotionalen Gesichtsausdrücken bei Gesunden und Patienten mit schizophrenen Erkrankungen / Neurophysiologic correlates of face processing and facial affect decoding in healthy controls and schizophrenic patients

Herrmann, Martin Josef January 2003 (has links) (PDF)
Ausgangspunkt für diese Arbeit war die Diskrepanz zwischen der vielfach belegten Schwierigkeit schizophrener Patienten bei der Dekodierung emotionaler Gesichtsausdrücke und dem mangelhaften Wissen über die hierfür verantwortlichen Prozesse. In der Literatur der letzten Jahre gab es einige viel versprechende Ergebnisse, die nahe legten, dass mit dem Elektroenzephalogramm (EEG) sowohl die Verarbeitung von Gesichtern, als auch der Mimik messbar ist. Somit wäre das EEG eine geeignete Methode den Prozess der Emotionsdekodierung bei schizophrenen Patienten zu untersuchen. Diese Arbeit untersucht folgende zwei Hauptfragestellungen. Erstens, wie lassen sich die für die Verarbeitung von Gesichtern und das Erkennen von emotionalen Gesichtsausdrücken verantwortlichen kognitiven Prozesse mit Hilfe ereigniskorrelierter Potentiale des EEGs reliabel messen? Zweitens, sind diese Prozesse bei schizophrenen Patienten im Vergleich zu gesunden Probanden beeinträchtigt? Zur Klärung der ersten Fragestellung wurden drei Stichproben gesunder Personen untersucht. Es zeigte sich in allen drei Untersuchungen, dass sich die Verarbeitung von Gesichtern im Vergleich zu Kontrollreizen in einer negativen Komponente um 170 ms über temporalen Elektrodenpositionen widerspiegelt (Gesichterpeak, N170). Die N170 konnte mit dem Quellenlokalisationsprogramm LORETA unter anderem im Gyrus Fusiformis, der entsprechenden Hirnregion für die Gesichtsverarbeitung, lokalisiert werden. Für die Dekodierung emotionaler Gesichtsausdrücke konnten keine wiederholbaren Effekte nachgewiesen werden. Im Weiteren wurde die Gesichtsverarbeitung bei schizophrenen Patienten untersucht. 22 als schizophren diagnostizierte Patienten wurden mit einer nach dem Alter, dem Geschlecht und dem Bildungsstatus angepassten Kontrollgruppe verglichen. In dieser Auswertung deutete sich bei schizophrenen Patienten ein Defizit in den frühen Verarbeitungsschritten von Gesichtern an. Dieses Ergebnis wurde in dieser Art noch nicht gezeigt und reiht sich ein in Studien, die sowohl strukturelle Veränderungen in den für die Gesichtsverarbeitung wesentlichen Hirnregionen bei schizophrenen Patienten zeigen konnten als auch ein allgemeines Defizit früher visueller Verarbeitung nahe legen. / This study was based on the fact that schizophrenic patients show severe deficits in facial affect recognition and face processing but the affected processes are still unknown. Recent studies claimed that face processing as well as facial affect recognition can be measured with the electroencephalogram (EEG). Therefore this study had two main aims. First, we tried to measure face processing and facial affect recognition in a reliable manner in three independent samples of healthy controls. Secondly, we investigated whether these processes are impaired in schizophrenic patients. For face processing we replicated in all three samples the face specific N170 component, with higher negative amplitudes in the event-related potentials at 170 ms after face presentation. LORETA source localisation revealed higher activity for the N170 in the Gyrus Fusiformis, a region well known for face processing. For the facial affect recognition no reliable parameters could be reported. The comparison between 22 schizophrenic patients and 22 healthy controls revealed deficits in the N170 component and therefore for face processing in the group of patients. This result has not been reported before but is accordance with reduced volumes of the Gyrus Fusiformis in schizophrenic patients
27

Neurophysiologie du contrôle moteur des muscles érecteurs du rachis : caractérisation des circuits de neurones

Desmons, Mikaël 13 December 2023 (has links)
Thèse ou mémoire avec insertion d'articles / Introduction : Les muscles du tronc participent au maintien de la posture, ils s'activent pour rigidifier et/ou mouvoir la colonne vertébrale. Il est possible de distinguer deux types de contrôle moteur pour ces derniers: un contrôle volontaire (e.g., extension du dos) et un contrôle postural pour conserver la posture (involontaire). Les patients souffrant d'états de santé tels que les accidents vasculaires cérébraux, les lésions de la moelle épinière et les lombalgies présentent des altérations du contrôle moteur du tronc. Ces altérations peuvent être dues à une lésion du système nerveux central (SNC) (e.g., accident vasculaire cérébral) ou à une réorganisation des circuits neuronaux (e.g., lombalgie) en présence de douleur. Bien que la lombalgie chronique soit à l'origine du plus grand nombre d'années vécues avec incapacité dans le monde, la neurophysiologie du contrôle moteur des muscles paravertébraux lombaires est méconnue. Par exemple, les études sondant les représentations des muscles paravertébraux lombaires avec la stimulation magnétique transcrânienne (TMS) chez l'humain se sont concentrées sur une seule région : le cortex moteur primaire (M1). Pourtant, d'autres circuits de neurones tels que l'aire motrice supplémentaire (SMA) semblent impliqués. Dépendamment de la direction du courant électrique utilisée (postéro-antérieur [PA] vs. antéro-postérieur [AP]), la TMS pourrait activer différents circuits de neurones qui pourraient être impliqués différemment dans le contrôle des muscles du tronc. Il a été suggéré que les circuits recrutés par le courant AP pourraient refléter l'action des structures prémotrices (prémoteur et SMA) sur le M1. L'objectif général de la thèse est d'explorer, à l'aide de techniques de neurophysiologie (TMS et réflexe d'étirement (SR)), le fonctionnement de différents circuits de neurones impliqués dans le contrôle moteur des muscles paravertébraux lombaires chez des individus en santé. Méthode : Une revue systématique de la littérature a été réalisée pour examiner systématiquement les études portant sur le contrôle neuronal des muscles paravertébraux lombaires chez l'homme testé par la TMS. Puis, la TMS a été utilisée dans deux études pour mesurer l'excitabilité corticospinale des muscles érecteurs du rachis lombaire (LES) chez des individus en santé. Dans l'étude 2, l'effet de différentes directions de courant de la TMS (PA- vs. AP-TMS) sur la mesure du contrôle corticomoteur des LES et sur la cartographie de la représentation corticale des LES ont été réalisé pendant une tâche statique de maintien postural. Dans l'étude 3, l'excitabilité des circuits de neurones PA- et AP-TMS ainsi que l'excitabilité spinale (SR) ont été testés lors de la préparation et de l'exécution de tâches posturale et volontaire des LES. Les potentiels moteurs évoqués (MEPs) et SR ont été mesurés à plusieurs intervalles de temps avant l'exécution d'une bascule du bassin (activation volontaire des LES) et d'une flexion bilatérale des épaules (activation posturale des LES). Résultats : Les résultats obtenus dans l'étude 1 suggèrent des projections bilatérales à partir de chaque M1 vers un muscle lombaire et la présence de circuits inhibiteurs et excitateurs intracorticaux dans M1. Dans l'étude 2, l'utilisation du courant AP-TMS a entraîné une latence de réponse plus tardive, une inhibition plus importante avec un protocole de stimulations pairées, et un seuil moteur plus élevé qu'avec le courant PA-TMS. Les résultats de l'étude 3 ont révélé (i) dans la tâche posturale, un changement de l'excitabilité corticospinale et motoneuronale plus élevé pendant l'exécution par rapport à la préparation motrice, quelle que soit la direction du courant et (ii) dans la tâche volontaire, une augmentation de l'excitabilité corticospinale pendant l'exécution par rapport à la préparation motrice uniquement avec le courant AP-TMS. Conclusion : Les connaissances des structures neuronales sous-jacentes du contrôle moteur des muscles paravertébraux lombaires sont influencées par les études menées en neurophysiologie sur le contrôle moteur des muscles distaux (e.g., main). Les résultats de la thèse supportent l'existence de différences entre le contrôle moteur des muscles paravertébraux lombaires et des muscles distaux, notamment par une plus grande contribution des voies descendantes bilatérales. De plus, les résultats soutiennent l'existence de deux circuits de neurones sous-jacents du contrôle moteur des LES recrutés par les courants PA- et AP-TMS. Ces circuits semblent contribuer différemment au contrôle moteur des LES dépendamment du type de tâche à réaliser (posturale ou volontaire) chez des individus en bonne santé. De futures études seront nécessaires pour explorer si ces circuits sont modulés différemment en présence de douleur expérimentale (e.g., stimulation électrique) et clinique (e.g., lombalgie). / Introduction: The muscles of the trunk are essential for maintaining posture, they are activated to stiffen and/or move the spine. Two types of motor control can be distinguished for them: voluntary control (e.g., back extension) and postural control during which the motor system is activated to maintain posture. Patients suffering from various health conditions such as stroke, spinal cord injury and low back pain show alterations in the trunk motor control. These alterations may be due to damage to the central nervous system (CNS) (e.g., stroke) or to a reorganisation of neural circuits (e.g., low back pain) in the presence of pain. Although chronic low back pain accounts for the largest number of years lived with disability in the world, the neurophysiology of motor control of the lumbar paraspinal muscles is poorly understood even in healthy individuals. For example, studies probing trunk muscle representations with transcranial magnetic stimulation (TMS) in humans have mainly focused on a single region: the primary motor cortex (M1). However, evidence suggests the major involvement of other neural circuits such as the supplementary motor area (SMA). Depending on the direction of the electrical current used (posterior-anterior [PA] vs. antero-posterior [AP]), TMS could activate different neural circuits that might be differently involved in trunk muscle control. It has been suggested that the circuits recruited by the AP current may reflect the action of premotor structures (premotor and SMA) on the M1. The general objective of the thesis is to explore, using neurophysiological techniques (TMS and stretch reflex (SR)), the functioning of different neural circuits involved in the motor control of lumbar paraspinal muscles in healthy individuals. Methods: A systematic review of the literature was conducted to systematically examine studies of the neural control of lumbar muscles in humans tested by TMS. Then, TMS was used in two studies to measure the corticospinal excitability of lumbar spinal erector spinae (LES) muscles. In Study 2, the effect of different TMS current directions (PA- vs. AP-TMS) on the measurement of corticomotor control of the LES muscles and on the mapping of the cortical representation of the LES muscles were performed during a static postural maintenance task in healthy individuals. In Study 3, the excitability of PA- and AP-TMS neural circuits as well as spinal excitability via the stretch reflex were tested during the preparation and execution of postural and voluntary LES muscle tasks. MEPs and SR were measured at several time intervals before the execution of a pelvic tilt (voluntary activation of the lumbar muscles) and a bilateral shoulder flexion (postural activation of the lumbar muscles). Results: The results obtained in Study 1 suggest bilateral projections from each M1 to a lumbar muscle and the presence of intracortical inhibitory and excitatory circuits in M1. In Study 2, the use of AP-TMS current resulted in a later response latency, greater inhibition with a paired pulses stimulation protocol, and a higher motor threshold than with PA-TMS current. The results of Study 3 revealed (i) in the postural task, a higher modulation of corticospinal and motoneuronal excitability during execution than during motor preparation, regardless of the direction of the current and (ii) in the voluntary task, a modulation of corticospinal excitability that was present only with the AP-TMS current. Conclusion: Knowledge of the neural structures underlying motor control of lumbar paraspinal muscles is greatly influenced by neurophysiological studies of motor control of distal muscles (e.g., hand). However, the results of the thesis support the existence of differences between the motor control of the lumbar paraspinal muscles and the distal muscles, notably through a greater contribution of bilateral descending pathways. Furthermore, the results support the existence of two underlying neuronal circuits of LES muscle motor control recruited by PA- and AP-TMS currents. These circuits also appear to contribute differently to LES motor control depending on the type of task being performed (postural or voluntary) in healthy individuals. Future studies are needed to explore whether these circuits are active differently in the presence of experimental (e.g., electrical stimulation) and clinical (e.g., low back pain) pain.
28

The reward system and binge eating disorder

Quansah Amissah, Richard 27 January 2024 (has links)
No description available.
29

Functional contribution of the mesencephalic locomotor region to locomotion

Josset, Nicolas 25 July 2018 (has links)
Parce qu'il est naturel et facile de marcher, il peut sembler que cet acte soit produit aussi facilement qu'il est accompli. Au contraire, la locomotion nécessite une interaction neurale complexe entre les neurones supraspinaux, spinaux et périphériques pour obtenir une locomotion fluide et adaptée à l'environnement. La région locomotrice mésencéphalique (MLR) est un centre locomoteur supraspinal situé dans le tronc cérébral qui a notamment pour rôle d'initier la locomotion et d'induire une transition entre les allures locomotrices. Cependant, bien que cette région ait initialement été identifiée comme le noyau cunéiforme (CnF), un groupe de neurones glutamatergiques, et le noyau pédonculopontin (PPN), un groupe de neurones glutamatergiques et cholinergiques, son corrélat anatomique est encore un sujet de débat. Et alors qu'il a été prouvé que, que ce soit lors d’une stimulation de la MLR ou pour augmenter la vitesse locomotrice, la plupart des quadrupèdes présentent un large éventail d'allures locomotrices allant de la marche, au trot, jusqu’au galop, la gamme exacte des allures locomotrices chez la souris est encore inconnue. Ici, en utilisant l'analyse cinématique, nous avons d'abord décidé d'identifier d’évaluer les allures locomotrices des souris C57BL / 6. Sur la base de la symétrie de la démarche et du couplage inter-membres, nous avons identifié et caractérisé 8 allures utilisées à travers un continuum de fréquences locomotrices allant de la marche au trot puis galopant avec différents sous-types d'allures allant du plus lent au plus rapide. Certaines allures sont apparues comme attractrices d’autres sont apparues comme transitionnelles. En utilisant une analyse graphique, nous avons également démontré que les transitions entre les allures n'étaient pas aléatoires mais entièrement prévisibles. Nous avons ensuite décidé d'analyser et de caractériser les contributions fonctionnelles des populations neuronales de CnF et PPN au contrôle locomoteur. En utilisant des souris transgéniques exprimant une opsine répondant à la lumière dans les neurones glutamatergiques (Glut) ou cholinergiques (CHAT), nous avons photostimulé (ou photo-inhibé) les neurones glutamatergiques du CnF ou du PPN ou les neurones cholinergiques du PPN. Nous avons découvert que les neurones glutamatergiques du CnF initient et modulent l’allure locomotrice et accélèrent le rythme, tandis que les neurones glutamatergiques et cholinergiques du PPN le ralentissent. En initiant, modulant et en accélérant la locomotion, notre étude identifie et caractérise des populations neuronales distinctes de la MLR. Définir et décrire en profondeur la MLR semble d’autant plus urgent qu’elle est devenue récemment une cible pour traiter les symptômes survenant après une lésion de la moelle épinière ou liés à la maladie de Parkinson. / Because it is natural and easy to walk, it could seem that this act is produced as easily as it is accomplished. On the contrary, locomotion requires an intricate and complex neural interaction between the supraspinal, spinal and peripheric neurons to obtain a locomotion that is smooth and adapted to the environment. The Mesencephalic Locomotor Region (MLR) is a supraspinal brainstem locomotor center that has the particular role of initiating locomotion and inducing a transition between locomotor gaits. However, although this region was initially identified as the cuneiform nucleus (CnF), a cluster of glutamatergic neurons, and the pedunculopontine nucleus (PPN), a cluster of glutamatergic and cholinergic neurons, its anatomical correlate is still a matter of debate. And while it is proven that, either under MLR stimulation or in order to increase locomotor speed, most quadrupeds exhibit a wide range of locomotor gaits from walk, to trot, to gallop, the exact range of locomotor gaits in the mouse is still unknown. Here, using kinematic analysis we first decided to identify to assess locomotor gaits C57BL/6 mice. Based on the symmetry of the gait and the inter-limb coupling, we identified and characterized 8 gaits during locomotion displayed through a continuum of locomotor frequencies, ranging from walk to trot and then to gallop with various sub-types of gaits at the slowest and highest speeds that appeared as attractors or transitional gaits. Using graph analysis, we also demonstrated that transitions between gaits were not random but entirely predictable. Then we decided to analyze and characterize the functional contributions of the CnF and PPN’s neuronal populations to locomotor control. Using transgenic mice expressing opsin in either glutamatergic (Glut) or cholinergic (CHAT) neurons, we photostimulated (or photoinhibited) glutamatergic neurons of the CnF or PPN or cholinergic neurons of the PPN. We discovered that glutamatergic CnF neurons initiate and modulate the locomotor pattern, and accelerate the rhythm, while glutamatergic and cholinergic PPN neurons decelerate it. By initiating, modulating, and accelerating locomotion, our study identifies and characterizes distinct neuronal populations of the MLR. Describing and defining thoroughly the MLR seems all the more urgent since it has recently become a target for spinal cord injury and Parkinson’s disease treatment.
30

Étude in vivo du "burst-suppression"

Ferron, Judy-Fay 16 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2009-2010 / Cette étude résume certains concepts liés à l’anesthésie générale, détaille les mécanismes d’action de l’isoflurane, un anesthésiant volatil, et aborde le phénomène du burst-suppression. Elle vise principalement la compréhension de l’impact de l’isoflurane, à des doses amenant le burst-suppression, sur l’inhibition dans le réseau thalamo-cortical. Nous effectuons des enregistrements intracellulaires de neurones corticaux in vivo et de potentiels de champs locaux à différentes doses d’anesthésiants chez le chat. Conjointement à ces enregistrements, nous appliquons des drogues en iontophorèse en péri-synaptique des neurones enregistrés et nous stimulons les noyaux thalamiques projetant dans les aires corticales enregistrées. Nous suggérons que l’isoflurane amène une diminution de l’inhibition corticale, via une plus grande recapture du glutamate par les glies, ce qui diminue l’activation des interneurones corticaux. / This study summarizes some concepts about general anesthesia, details the mechanisms of action of the volatile anesthetic isoflurane and describes the phenomenon of burst-suppression. It aims at understanding the impact of isoflurane, under doses sufficient to induce burst-suppression, on inhibition in the thalamo-cortical network. We performed intracellular recordings of cortical neurons in vivo and local field potentials under different doses of anesthesia in cats. Additionally, we applied drugs in iontophoresis in the perisynaptic space of the recorded neurons and we stimulated thalamic nuclei projecting to the areas where recordings were performed. We suggest that isoflurane diminishes the cortical inhibition, by an increase of the glutamate uptake by glial cells leading to a diminished activation of cortical interneurons.

Page generated in 0.0824 seconds