• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement et caractérisation de modèles C. elegans pour la maladie de Machado-Joseph

Fard Ghassemi, Yasmin 06 1900 (has links)
Les maladies à expansion de polyglutamine sont un ensemble de troubles neurodégénératives héréditaires se développant lorsqu’il y a répétitions de trinucléotides CAG dans les gènes causatifs au-delà d’un certain seuil. L’expansion des répétitions de trinucléotides CAG entraîne des désordres neurologiques héréditaires précoces, dont de multiples formes d’ataxie spinocérébelleuse (SCA). Parmi celles-ci, le type le plus commun et dominant est l’ataxie spinocérébelleuse de type 3 (SCA3), aussi connue sous le nom de la maladie de Machado-Joseph (MMJ). Ce dernier est un désordre neurologique progressif autosomique dominant. Le gène causatif de MMJ est ATXN3 (ATAXINE-3). Plusieurs études récentes suggèrent une association entre ce gène et la modulation du stress du réticulum endoplasmique (RE). Lors de ce travail de maîtrise, des souches transgéniques de C. elegans exprimant les formes sauvage et mutante du gène ATXN3 humain ont été générées. Les résultats suggèrent des phénotypes importants chez la souche transgénique mutante associés à la pathologie humaine: défaut de motilité, longévité réduite et profil neurodégénératif considérable. Ceci dit, ces résultats nous ont poussé à vouloir déterminer si l’utilisation des composés chimiques, connus en tant que modulateurs du stress du RE et possédant des rôles neuroprotecteurs, sont capables de restaurer les phénotypes notés. Les composés utilisés, c’est-à-dire le Bleu de Méthylène, le Salubrinal et le Guanabenz, ont démontré une capacité de corriger les phénotypes rapportés dans la souche transgénique mutante. De plus, ces composés ont aussi été en mesure de prévenir une augmentation du niveau du stress oxydatif et de la réponse au stress du RE exhibé chez les vers mutants. Par le développement de nouveaux modèles C. elegans pour la MMJ, où il y a expression du gène ATXN3 complet dans les motoneurones, il a été possible de trouver qu’une modulation chimique du stress du RE peut réduire considérablement la neurodégénérescence et par conséquent, être une possible nouvelle approche thérapeutique pour traiter cette pathologie. / Polyglutamine expansion diseases are a class of dominantly inherited neurodegenerative disorders that develop when a CAG repeat in the causative genes is unstably expanded above a certain threshold. The expansion of trinucleotide CAG repeats causes hereditary adult-onset neurodegenerative disorders such as multiple forms of spinocerebellar ataxia (SCA). The most common dominantly inherited spinocerebellar ataxia is the type 3 (SCA3) also known as Machado-Joseph disease (MJD), an autosomal dominant, progressive neurological disorder. The gene causing MJD is ATXN3 (ATAXIN-3): MJD is caused by an abnormal CAG trinucleotide repeat expansion in the ATXN3 gene. Several recent studies have shown that this gene is associated with endoplasmic reticulum (ER) stress. In this study, we generated transgenic C. elegans strains expressing wild type or mutant human ATXN3 genes and tested them for recovery of locomotor phenotype, lifespan and neurodegeneration phenotypes upon treatment with compounds known to modulate ER stress and having neuroprotective roles. We observed differences between both transgenic lines and found that the motility defects, the reduced lifespan and the neurodegeneration can be rescued by methylene blue, guanabenz and salubrinal. These compounds were also able to prevent the oxidative stress and the ER stress response induced by mutant transgenic worms. We introduce novel C. elegans models for MJD based on the expression of full-length ATXN3 in GABAergic motor neurons. Using these models we discovered that chemical modulation of the ER unfolded protein response reduced neurodegeneration and could be a new therapeutic approach for the treatment of MJD.
2

Identification de molécules neuroprotectrices, facteurs de transcription et voies de signalisation en jeu pour la maladie de Machado-Joseph par un modèle transgénique C. elegans

Fard Ghassemi, Yasmin 06 1900 (has links)
L’ataxie spinocérébelleuse de type 3, aussi connue en tant que la maladie de Machado-Joseph (MMJ), est une maladie qui se développe lorsqu’il y a une expansion des trinucléotides CAG dans la région codante du gène ATXN3. Ce dernier code pour la protéine ATXN3, une enzyme désubiquitinante avec des fonctions essentielles dans le maintien et la stabilisation de l’homéostasie protéique, la résistance au stress, la régulation de la transcription, la réparation de l’ADN, l’organisation du cytosquelette et la régulation de la myogenèse. Les principaux symptômes associés à cette maladie sont l’ataxie (le symptôme clé), une détérioration motrice progressive, la dystonie, la spasticité et la rigidité. Du fait de l’absence de thérapie spécifique et efficace pour traiter les individus atteints de la MMJ, l’approfondissement des connaissances liées à cette maladie est nécessaire. Le but de cette thèse est de comprendre davantage les mécanismes et voies de signalisations impliqués dans la pathologie de la MMJ. Pour atteindre cet objectif, à partir de notre modèle transgénique C. elegans MMJ, deux différents criblages ont été effectués : un criblage non biaisé de 3942 composés, et un criblage de modificateurs génétiques à base d’ARN interférent (ARNi) de 387 clones de facteurs de transcription. Le premier criblage nous a permis d’identifier cinq molécules prometteuses : l’alfacalcidol, le chenodiol, le cyclophosphamide, le fenbufen et le sulfaphenazole. Elles ont permis la restauration du défaut de la motilité, la protection contre la neurodégénérescence, et une augmentation de la durée de vie réduite chez les vers mutants. Trois parmi ces molécules, le chenodiol, le fenbufen et le sulfaphenazole ont démontré une nécessité de la présence de HLH-30/TFEB, un régulateur clé de l’autophagie et de la biogenèse lysosomale, pour leurs propriétés neuroprotectrices. Concernant le deuxième criblage, il nous a permis d’identifier un nouveau gène candidat impliqué dans la MMJ, fkh-2/FOXG1. L’inactivation de ce gène a entraîné une aggravation du défaut de la motilité, de la neurodégénérescence, et de la longévité réduite. À l’inverse, sa surexpression a restauré tous ces phénotypes, suggérant ainsi un rôle neuroprotecteur pour FKH-2/FOXG1 dans la MMJ. Le modèle C. elegans de MMJ et les criblages sont des outils puissants permettant un approfondissement des connaissances quant à la pathologie de la MMJ. Pour cette thèse, par l’identification des molécules neuroprotectrices et les facteurs de transcription HLH-30/TFEB et FKH-2/FOXG1, ayant des activités neuroprotectrices dans notre modèle lorsqu’ils sont surexprimés, il a été possible à mieux comprendre la pathologie de la MMJ, ainsi que les mécanismes et les voies de signalisation qui y sont impliqués. Ces découvertes sont prometteuses à investiguer dans des organismes modèles plus avancés, des applications précliniques et également, pour le développement de nouvelles interventions thérapeutiques pour la MMJ. / Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (MJD), is a polyglutamine expansion disease arising from a trinucleotide CAG repeat expansion in the coding region of ATXN3. This gene encodes ATXN3 protein, a deubiquitinating enzyme, which is involved in protein homeostasis maintenance and stabilization, stress resistance, transcription regulation, DNA repair, cytoskeleton organisation and myogenesis regulation. The main symptoms associated with this disease are ataxia (the key symptom), progressive motor deterioration, dystonia, spasticity and stiffness. Due to our incomplete understanding of mechanisms and molecular pathways related to this disease, there are no therapies that successfully treat core MJD patients. Therefore, the identification of new candidate targets related to this disease is needed. The aim of this thesis is to gain insights into the pathways and mechanisms leading to MJD. In order to achieve this goal, we performed two different screens, a blind drug screen of 3942 compounds to identify protective small molecules, and a large-scale RNA interference (RNAi) screen of 387 transcription factor genes leading to identification of modifiers involved in our transgenic C. elegans MJD model. The first screen allowed us to identify five lead compounds restoring motility, protecting against neurodegeneration, and increasing the lifespan in mutant worms. These compounds were alfacalcidol, chenodiol, cyclophosphamide, fenbufen and sulfaphenazole. We then found that three of these compounds, chenodiol, fenbufen and sulfaphenazole required HLH-30/TFEB, a key transcriptional regulator of the autophagy and the lysosomal biogenesis, to complete their neuroprotective activities. The second screen brought us to identify a news hit gene candidate involved in MJD, fkh-2/FOXG1. We showed that inactivation of this gene enhanced the motility defect, neurodegeneration and reduced longevity in our MJD model. However, in opposite, its overexpression rescued all these phenotypes, suggesting a neuroprotective role for FKH-2/FOXG1 in MJD when overexpressed. C. elegans models for MJD and the screenings are promising tools to understand the mechanisms and pathways causing neurodegeneration, leading to MJD. In this study, we identified positively acting compounds that may be promising candidates for investigation in mammalian models of MJD and preclinical applications in the treatment of this disease. Also, we gained insights into the pathways of MJD and found that HLH-30/TFEB and FKH-2/FOXG1 are both implicated in MJD and have neuroprotective activities when they are overexpressed. These promising findings may aid the development of novel therapeutic interventions for MJD.

Page generated in 0.0896 seconds