• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neuroprotective gene therapy strategies applied to the acutely damaged immature rat brain

Peluffo Zavala, Hugo 18 May 2006 (has links)
Un daño agudo al sistema nervioso central (SNC) desencadena una serie de eventos complejos e interrelacionados, entre los cuales encontramos tres especialmente importantes: excitotoxicidad, estrés oxidativo e inflamación. En particular, el cerebro inmaduro muestra varias características que lo hacen especial en cuanto a sus reacciones frente a lesioned agudas. En este contexto, la presente Tesis contribuye al conocimiento básico de los procesos de estrés oxidativo e inflamación que ocurren luego de una lesión excitotoxica mediada por inyección de NMDA en el cerebro inmaduro. Asimismo, desarrolla estrategias neuroprotectoras mediante la utilización de nuevos vectores de terapia génica combinados con la sobreexpresión de enzimas antioxidantes. Esta Tesis muestra que la expresión de una de las enzimas antioxidantes más importantes, la Cu/Zn superoxide dismutase (SOD), en el cerebro inmaduro normal se observa principalmente en neuronas, pero también en la glia limitans y la pared de los ventrículos cerebrales. Sin embrago, 4 horas después de una lesión excitotóxica, la enzima muestra una importante reducción en las neuronas afectadas por la lesión aguda inicial, ocurriendo esto antes de que estas neuronas iniciaran un proceso de muerte neuronal. A partir del primer día postlesión la expresión de SOD comienza a aumentar en astrocitos reactivos. La nitrotirosina, un producto del peroxinitrito, en el cerebro inmaduro luego de la lesión mostró un incremento en neuronas del núcleo de la lesión, y al día 1 postlesión también se observó en astocitos. Es interesante destacar que los astrocitos nitrados a partir de los 3 días postlesión delimitaban una subpoblación celular mostrando como características principales un alto grado de hipertrófia, elevados niveles de GFAP, expresión de novo de vimentina y SOD, y expresando metalotiooneina I/II, siendo siempre los astrocitos más reactivos. Asimismo, a pesar de encontrarse altamente nitrados y expresar la caspasa 3 activa en su núcleo, estos astrocitos no mostraron ningun signo morfológico de muerte celular ni tinción para TUNEL, lo cual sugiere que estas células no mueren al menos hasta los 7 días postlesión. Esta Tesis se centró seguidamente en el desarrollo de nuevas estrategias de terapia génica basadas en vectores proteicos modulares recombinantes. Cuando estos vectores fueron inyectados intracerebralmente 4 horas luego de la lesión, fueron capaces de transfectar células en toda la zona lesionada del cerebro inmaduro. Asimismo, fueron capaces de transfectar tanto neuronas como astrocitos y microglía, sin generar inflamación adicional. Con estos resultados prometedores, una de estos vectores se utilizó para sobreexpresar la SOD 2 horas luego de la lesión. Esta sobreexpresión indujo una disminución en los niveles de nitrotirosina, una disminución en el volúmen de lesión, un aumento en la supervivencia neuronal, y una recuperación funcional significativa cuando se compararon con animales lesionados e inyectados con solución salina control. Sorprendentemente, esta Tesis muestra que estos vectores poseen un potencial neuroprotector endógeno, que es mediado por sus dominios de interacción con integrinas Arg-Gly-Asp (RGD), ya que la inyección in vivo de un pequeño péptido ciclico con la secuencia RGD también resultó neuroprotector a niveles similares. En cultivos celulares mixtos de corteza cerebral, tanto los vectores como el péptido RGD fueron protectores frente a un daño inducido por NMDA, pero no lo fueron en cultivos purificados de neuronas corticales, sugiriendo que el efecto neuroprotector es dependiente de células gliales.Esta Tesis concluye que el estrés oxidativo, y en particular la vía del superóxido/peroxinitrito, contribuyen de manera fundamental al desarrollo de una lesión aguda en el cerebro inmaduro. Asimismo, la sobreepresión de SOD puede ser una interesante estrategia neuroprotectora. Finalmente, concluye que los vectores proteicos recombinantes modulares pueden actuar eficientemente in vivo luego de una lesión aguda al cerebro inmaduro, produciendo niveles terapéuticos de proteinas neuroprotectoras. / Acute central nervous system (CNS) damage consists of a multitude of inter-related and complex events, playing excitotoxicity, oxidative stress and inflammation important roles in the initial and secondary injury. In particular, the immature brain displays several characteristics that make it special in its reactions against acute injuries. In this context, this Thesis contributes to the basic understanding of the oxidative stress and inflammation occurring after an NMDA-mediated excitotoxic lesion to the immature brain, and to the development of neuroprotective gene therapy strategies for reducing immature brain damage by inhibiting oxidative stress. This Thesis shows the in vivo expression and cell localization of one of the most important antioxidant proteins, Cu/Zn superoxide dismutase (SOD), whose expression was observed mainly in neuronal cells, glia limitans and ependyma in the normal immature brain. However, after an excitotoxic lesion, the expression of this enzyme rapidly disappeared (at 4 hours) from the acutely affected neurons before they underwent cell death. One day after, expression of SOD begun to increase in reactive astrocytes, present in the lesion for up to 7 days, the last time studied. Moreover, in the normal brain, the peroxynitrite product nitrotyrosine was observed in neurons and scattered astrocytes, however, after the excitotoxic lesion it was early increased in neurons of the lesion core, and after at 1 day post-lesion it increased also in astrocytes. Interestingly, the nitrated hypertrophied astrocytes from 3 days post-lesion onward represented a separated population of cells sharing several markers such as vimentin, metallothionein, SOD, and high GFAP content and hypertrophy, being always phenotypically the most reactive astrocytes. In addition, although being heavily nitrated and showing activated caspase 3 in their nuclei, nitrated astrocytes did not display any morphological sign of cell death nor TUNEL staining at any time-point studied. The next step of this Thesis was to explore the putative beneficial effects of the overexpression of SOD after the NMDA excitotoxic lesion. This Thesis focused on the development of a new gene therapy strategy based on a non-viral modular recombinant protein vector. These vectors could deliver a transgene to the whole excitotoxically lesioned zone of the immature brain when injected 4 hours after the lesion. Moreover, they could transfect neurons, astrocytes and microglial cells, without generating additional inflammation. With these promising results, one of these protein vectors was used for overexpressing SOD 2 hours after the excitotoxic lesion. SOD overexpressing animals displayed decreased nitrotyrosine formation, reduced lesion volume, increased neuronal survival, and a complete functional recovery after 3 days in relation to NMDA+saline injected animals. Surprisingly control lesioned animals injected with the protein vector overexpressing the transgene for the green fluorescent protein or with the naked protein vector without any DNA, showed also a reduced lesion volume. Finally this Thesis showed that the neuroprotective potential of the protein vectors was mediated by the vectors integrin-interacting Arg-Gly-Asp (RGD) motif, as a cyclic RGD peptide was sufficient to induce this neuroprotection. Accordingly, both the protein vector and the cyclic RGD peptide were neuroprotective against a NMDA mediated injury to mixed cortical cultures. However, none of these molecules were neuroprotective under the same treatment conditions in cortical neuron purified cultures, suggesting that the neuroprotective mechanisms include triggering of a glial derived neurotrophic phenotype. This Thesis concludes that oxidative stress, and in particular the O2-./ONOO- pathway is a mayor contributor to lesion expansion in the acutely injured immature brain, and that the overexpression of SOD is an interesting neuroprotective strategy. In addition, it shows that modular recombinant protein vectors are efficient gene therapy vectors that can be applied to therapeutic interventions to the acutely lesioned immature brain.
2

Identification de molécules neuroprotectrices, facteurs de transcription et voies de signalisation en jeu pour la maladie de Machado-Joseph par un modèle transgénique C. elegans

Fard Ghassemi, Yasmin 06 1900 (has links)
L’ataxie spinocérébelleuse de type 3, aussi connue en tant que la maladie de Machado-Joseph (MMJ), est une maladie qui se développe lorsqu’il y a une expansion des trinucléotides CAG dans la région codante du gène ATXN3. Ce dernier code pour la protéine ATXN3, une enzyme désubiquitinante avec des fonctions essentielles dans le maintien et la stabilisation de l’homéostasie protéique, la résistance au stress, la régulation de la transcription, la réparation de l’ADN, l’organisation du cytosquelette et la régulation de la myogenèse. Les principaux symptômes associés à cette maladie sont l’ataxie (le symptôme clé), une détérioration motrice progressive, la dystonie, la spasticité et la rigidité. Du fait de l’absence de thérapie spécifique et efficace pour traiter les individus atteints de la MMJ, l’approfondissement des connaissances liées à cette maladie est nécessaire. Le but de cette thèse est de comprendre davantage les mécanismes et voies de signalisations impliqués dans la pathologie de la MMJ. Pour atteindre cet objectif, à partir de notre modèle transgénique C. elegans MMJ, deux différents criblages ont été effectués : un criblage non biaisé de 3942 composés, et un criblage de modificateurs génétiques à base d’ARN interférent (ARNi) de 387 clones de facteurs de transcription. Le premier criblage nous a permis d’identifier cinq molécules prometteuses : l’alfacalcidol, le chenodiol, le cyclophosphamide, le fenbufen et le sulfaphenazole. Elles ont permis la restauration du défaut de la motilité, la protection contre la neurodégénérescence, et une augmentation de la durée de vie réduite chez les vers mutants. Trois parmi ces molécules, le chenodiol, le fenbufen et le sulfaphenazole ont démontré une nécessité de la présence de HLH-30/TFEB, un régulateur clé de l’autophagie et de la biogenèse lysosomale, pour leurs propriétés neuroprotectrices. Concernant le deuxième criblage, il nous a permis d’identifier un nouveau gène candidat impliqué dans la MMJ, fkh-2/FOXG1. L’inactivation de ce gène a entraîné une aggravation du défaut de la motilité, de la neurodégénérescence, et de la longévité réduite. À l’inverse, sa surexpression a restauré tous ces phénotypes, suggérant ainsi un rôle neuroprotecteur pour FKH-2/FOXG1 dans la MMJ. Le modèle C. elegans de MMJ et les criblages sont des outils puissants permettant un approfondissement des connaissances quant à la pathologie de la MMJ. Pour cette thèse, par l’identification des molécules neuroprotectrices et les facteurs de transcription HLH-30/TFEB et FKH-2/FOXG1, ayant des activités neuroprotectrices dans notre modèle lorsqu’ils sont surexprimés, il a été possible à mieux comprendre la pathologie de la MMJ, ainsi que les mécanismes et les voies de signalisation qui y sont impliqués. Ces découvertes sont prometteuses à investiguer dans des organismes modèles plus avancés, des applications précliniques et également, pour le développement de nouvelles interventions thérapeutiques pour la MMJ. / Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (MJD), is a polyglutamine expansion disease arising from a trinucleotide CAG repeat expansion in the coding region of ATXN3. This gene encodes ATXN3 protein, a deubiquitinating enzyme, which is involved in protein homeostasis maintenance and stabilization, stress resistance, transcription regulation, DNA repair, cytoskeleton organisation and myogenesis regulation. The main symptoms associated with this disease are ataxia (the key symptom), progressive motor deterioration, dystonia, spasticity and stiffness. Due to our incomplete understanding of mechanisms and molecular pathways related to this disease, there are no therapies that successfully treat core MJD patients. Therefore, the identification of new candidate targets related to this disease is needed. The aim of this thesis is to gain insights into the pathways and mechanisms leading to MJD. In order to achieve this goal, we performed two different screens, a blind drug screen of 3942 compounds to identify protective small molecules, and a large-scale RNA interference (RNAi) screen of 387 transcription factor genes leading to identification of modifiers involved in our transgenic C. elegans MJD model. The first screen allowed us to identify five lead compounds restoring motility, protecting against neurodegeneration, and increasing the lifespan in mutant worms. These compounds were alfacalcidol, chenodiol, cyclophosphamide, fenbufen and sulfaphenazole. We then found that three of these compounds, chenodiol, fenbufen and sulfaphenazole required HLH-30/TFEB, a key transcriptional regulator of the autophagy and the lysosomal biogenesis, to complete their neuroprotective activities. The second screen brought us to identify a news hit gene candidate involved in MJD, fkh-2/FOXG1. We showed that inactivation of this gene enhanced the motility defect, neurodegeneration and reduced longevity in our MJD model. However, in opposite, its overexpression rescued all these phenotypes, suggesting a neuroprotective role for FKH-2/FOXG1 in MJD when overexpressed. C. elegans models for MJD and the screenings are promising tools to understand the mechanisms and pathways causing neurodegeneration, leading to MJD. In this study, we identified positively acting compounds that may be promising candidates for investigation in mammalian models of MJD and preclinical applications in the treatment of this disease. Also, we gained insights into the pathways of MJD and found that HLH-30/TFEB and FKH-2/FOXG1 are both implicated in MJD and have neuroprotective activities when they are overexpressed. These promising findings may aid the development of novel therapeutic interventions for MJD.

Page generated in 0.0593 seconds