• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 11
  • 1
  • Tagged with
  • 39
  • 9
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization of a novel photo-reversible NMDA receptor-specific agonist for precise temporal control of receptor activation. / Caractérisation d'un nouveau composé chimique photoréversible spécifique pour les recepteurs NMDA pour un contrôle précis de l'activation des récepteurs

Repak, Emilienne 30 September 2014 (has links)
Le récepteur du glutamate de type NMDA (NMDAR) est l'un des deux principaux récepteurs glutamatergiques, et donc un des principaux mediateurs de la neurotransmission excitatrice dans le système nerveux central. Les NMDARs sont impliqués dans la plasticité synaptique, le corrélat cellulaire de l'apprentissage et de la mémoire. Actuellement, la technologie de pointe permettant l'investigation des propriétés des récepteurs synaptiques dans leur environnement natif est la photolyse de composés chimiques cagés, mais cet outil a des limitations concernant sa capacité à stimuler des NMDAR de manière très précise spatiellement et temporellement, à cause de la limite de diffraction de la lumière, qui définit le volume minimal de décageage duquel les molécules diffusent, et à cause de la nature irréversible de la réaction de décageage. En revanche, les molécules photoréversibles peuvent être activées et désactivées rapidement et de manière repétée, ce qui permet d'éviter les limitations de la diffusion afin d'accomplir une stimulation plus précise au niveau spatial et temporel. J'ai établi une collaboration autour du premier composé chimique photoréversible spécifique pour les NMDAR, et de plus, le premier qui est inactif dans son état le plus stable : l'azobenzene triazole glutamate (ATG). J'ai caracterisé ce composé chimique par activation un-photon et bi-photon, par l'application en bain et l'application locale, et dans plusieurs paradigmes expérimentaux. Dans ma thèse, je décris le fonctionnement de ce composé chimique, ses avantages et ses inconvénients, et certaines modifications à considérer pour l'optimisation future des composés chimiques photoréversibles. / The NMDA-type glutamate receptor (NMDAR) is one of two principal glutamate receptors, the main mediators of excitatory neurotransmission in the central nervous system. NMDARs are critically implicated in synaptic plasticity, the cellular correlate of learning and memory. Although significant advances have been made in understanding the behavior of this receptor, many questions remain. Currently, the state-of-the-art technology for investigating receptor properties in the native environment is caged compounds, which are restricted in their ability to precisely control the spatial and temporal activation of NMDAR due to the diffraction limit of light, which defines the minimum volume of uncaging from whence uncaging molecules diffuse, and the irreversible nature of uncaging. Photoswitchable molecules, by contrast, can rapidly and repeatedly be switched on and off, circumventing the diffusion limitation to permit fine spatial and temporal control of receptor activation. With this in mind, I formed a collaboration with a team of chemists to characterize a novel compound, azobenzene triazole glutamate (ATG), the first photoswitchable compound specific for NMDAR and biologically inert in its thermally stable state. Such a tool holds great promise for finely probing receptor behavior in its native environment. I characterized this compound using one- and two-photon activation, through bath and local application, and through a variety of different experimental paradigms. I demonstrate in detail the properties of this novel compound, propose potential applications of ATG as a novel tool, and suggest possible modifications to optimize future photoswitchable compound design.
12

Simulation du traitement effectué par certaines cellules étoilées du noyau cochléaire antéroventral et analyse de leur comportement en terme de modulation d'amplitude /

Tang, Ping, January 1995 (has links)
Mémoire (M.Eng.)--Université du Québec à Chicoutimi, 1995. / Document électronique également accessible en format PDF. CaQCU
13

Impact des potentiels synaptiques miniatures sur les neurones pyramidaux du néocortex, in vitro /

Lebel, Elen. January 1997 (has links)
Thèse (M.Sc.) -- Université Laval, 1997. / Bibliogr.: f. [51]-65. Publ. aussi en version électronique.
14

Incorporation d'antigènes vésiculaires à la membrane plasmique lors de l'exocytose massive de neurotransmetteur produite par le venin de l'araignée la veuve noire

Robitaille, Richard 13 February 2019 (has links)
Une étude a été effectuée a la jonction neuro- musculaire de grenouille pour vérifier l'existence du phénomène d'exocytose, c'est-à-dire la fusion des membranes vésiculaires avec la membrane plasmique lors de la libération de neurotransmetteur. Certaines jonctions neuromusculaires intactes, préalablement incubées avec des collagénases, sont incubées avec du Black Widow Spider Venom (BWSV) afin de provoquer une libération massive de neurotransmetteur et une exocytose des vésicules. Les jonctions sont immédiatement fixées après ce traitement. D'autres jonctions ne sont pas incubées avec le BWSV et servent de contrôle. La présence des membranes vésiculaires dans la membrane plasmique est révélée a l'aide d'un sérum antivésiculaire. La membrane plasmique intacte de la jonction empêche la diffusion des immunoglobulines a l'intérieur de celle-ci. La seule possibilité d'obtenir du marquage sur ces jonctions est donc d'incorporer les membranes vésiculaires a la membrane plasmique pour qu'elles soient exposées à l'extérieur de la terminaison. La position des anticorps est révélée à l'aide de la réaction peroxydase-DAB. Les observations sont effectuées a l'aide d'un microscope avec optique de Nomarski. Les tissus sont ensuite préparés pour les observations en microscopie électronique. Les observations en microscopie optique montrent que la plupart des jonctions marquées se retrouvent sur les muscles incubés avec le BWSV et le sérum antivésiculaire sauf quelques unes qui sont présentes sur les muscles non- incubés avec le BWSV mais incubés avec le sérum antivésiculaire. Aucune jonction marquée n'est observée sur les muscles non-incubés avec le sérum antivésiculaire. Les observations en microscopie électronique révélent du marquage sur la membrane présynaptique des profils de jonctions incubées avec le BWSV et le sérum antivésiculaire. Au contraire, la membrane présynaptique des jonctions non-incubées avec le BWSV est rarement marquée. On observe également sur des coupes transverses de jonctions neuromusculaires (l'intérieur accessible aux immunoglobulines) que le sérum antivésiculaire marque les différents organites impliqués par Heuser et Reese (1973) dans un recyclage local des membranes vésiculaires. Cette étude nous permet de conclure qu'il y a incorporation d'antigènes vésiculaires dans la membrane plasmique lors de l'exocytose massive de neurotransmetteur produite par le BWSV. Cette étude permet également de conclure que l'endocytose est spécifique aux membranes vésiculaires et que ces membranes semblent se disperser dans la membrane plasmique lors de l'exocytose massive produite par le BWSV. / Montréal Trigonix inc. 2018
15

Spectromètre à haute résolution à base de nanoparticules d'or pour la détection de neurotransmetteurs

Niyonambaza, Shimwe Dominique 23 October 2023 (has links)
La compréhension des fonctions du cerveau a toujours fasciné les scientifiques travaillant dans différents domaines de recherche et reste un sujet de recherche très vaste et complexe dont la maîtrise requière non seulement une étude approfondie des neurosciences mais aussi des outils facilitant cette étude. La conception de ces outils, tout comme le reste du matériel nécessaire aux études scientifiques, a connu de grands progrès suite aux avances technologiques des différents domaines d'ingénierie. Cependant, certaines molécules, notamment les neurotransmetteurs, qui sont impliquées dans le bon fonctionnement du cerveau et dont le dysfonctionnement est souvent associé aux pathologies neuropsychologiques restent très difficiles à discerner avec précision parmi d'autres molécules avec des propriétés physicochimiques semblables et surtout à cause de leur trop faible concentration dans les liquides physiologiques. Ce problème est encore plus en plus critique pour des applications in situ qui nécessitent une réponse rapide avec un minimum de matériel. Plusieurs méthodes de séparation et de détection moléculaire utilisées dans les autres domaines de recherche, malgré leur succès dans la détection de la plus part des neurotransmetteurs, ne conviennent pas au développement d'un outil de détection compact et réutilisable. Parmi ces méthodes, les plus représentatives sont basées sur des techniques telles que : 1. l'imagerie tomographique, la chromatographie en phase liquide à haute performance et les méthodes analytiques, qui utilisent la dérivatisation et dont la technologie actuelle ne permet pas la miniaturisation. 2. l'électrochimie, dont la sensibilité et la sélectivité sont limitées et dont surtout l'application se limite aux molécules actives aux réactions redox. 3. La colorimétrie, utilisant principalement des marqueurs non-cyclables. Pour des analyses ex situ qui ne nécessitent pas une réponse immédiate, ces techniques peuvent convenir pour réaliser la détection d'un neurotransmetteur donné. Cependant, pour comprendre le fonctionnement du système nerveux au niveau cellulaire, les recherches en neurosciences et en pathologie neuronale bénéficieraient d'un système autonome permettant de faire des mesures continues in situ. Même si ces méthodes fonctionnent au niveau cellulaire, le défi réside dans le fait elles sont difficilement miniaturisables avec les technologies actuelles. Cette thèse de doctorat comporte deux volets de recherche et ses contributions ont été présentées dans cinq conférences internationales et trois articles de journaux publiés ou soumis. L'objectif du premier volet de recherche est de développer une méthode de détection de neurotransmetteurs basée sur la détection du déplacement bathochrome de la bande plasmon de nanoparticules d'or ultrastables fonctionnalisées avec un aptamère spécifique à la molécule cible. L'objectif du deuxième volet de recherche est de concevoir un système compact basé sur la spectroscopie visible pour la détection du déplacement bathochrome de la bande plasmon des nanoparticules d'or utilisées comme biocapteurs de la molécule cible. Les deux volets ont alors pour objectifs spécifiques de : 1. Échantillonner un volume prédéterminé d'une solution inconnue, la mélanger avec un volume adéquat de nanoparticules d'or fonctionnalisées et détecter de façon autonome la concentration de dopamine dans la solution inconnue 2. Réutiliser les nanoparticules d'or ultrastables fonctionnalisées pour des utilisations futures. À ce jour, mis à part mes travaux de recherche, aucune méthode de détection de neurotransmetteurs ou autre molécule, atome ou ion n'utilise des nanoparticules d'or ou autre nano-objets plasmoniques réutilisables. La contribution majeure de ce projet, réalisé dans le premier volet de recherche, est la mise au point d'une méthode de détection moléculaire basée sur des nanoparticules d'or ultrastables et réutilisables qui ne s'agrègent pas dans conditions non supportables par d'autres types de nanoparticules d'or. Pour concrétiser l'objectif de détection de la dopamine in situ, le système optofluidique a été développé dans le deuxième volet de recherche et, en plus d'avoir une résolution spectrale comparable à un spectrophotomètre commercial, son module fluidique permet un échantillonnage automatique dans un volume 11 × 9 × 6 cm³. / Understanding the functions of the brain has always fascinated scientists working in different domains and it remains a very broad and complex subject of research requiring not only a depth study of neuroscience but also adequate tools to facilitate this study. The design of these tools, as well as the rest of the scientific equipment, has known great advances due to technological advances in the various fields of engineering. However, some molecules, such as neurotransmitters, which are involved in the adequate brain functions and whose dysfunction is often associated with neuropsychological pathologies remain very difficult to detect with precision among other molecules with similar physicochemical properties due to their very low concentration in physiological fluids. This problem is even more critical for in situ applications which require a quick response with limited equipment. Despite their success in the detection of most neurotransmitters, most molecular separation and detection methods used in other research fields, are not suitable for the development of compact and reusable detection systems. Among these methods, the most representative are based on techniques such as: 1. Tomographic imaging, high-performance liquid chromatography, and derivatization-based analytical methods that are not suitable for miniaturization with current technology. 2. Electrochemistry whose sensitivity and selectivity are limited and whose application is mainly limited to redox-active molecules. 3. Colorimetry based on non-reusable markers. For ex situ analyzes which do not require an immediate response, at least one of these techniques is suitable for the detection of a given neurotransmitter. However, to understand how the nervous system works at the cellular level, research in neuroscience and neuronal pathology may benefit from an autonomous system able to make continuous measurements in situ. Although these methods actually work at the cellular level, the challenge lies in the fact that they are difficult to miniaturize with current technologies. This project has two parts and its contributions have been presented in five international conferences and three published or submitted journal articles. The aim of the first part of the project was to develop a neurotransmitter detection method based on the measurement of the bathochromic shift of aptamer modified ultrastable gold nanoparticles' plasmon band as a response to the concentration of the target molecule. The aim of the second part is to design a compact system based on visible spectroscopy for the detection of the possible bathochromic shift of the plasmon band of the gold nanoparticles used as a probe for the target molecule. The specific objectives of this project include: 1. Sample a predetermined volume of an unknown solution, mix it with an adequate volume of functionalized gold nanoparticles and automatically detect the dopamine concentration in the unknown solution. 2. Reuse functionalized ultrastable gold nanoparticles for future uses. So far, apart from this project, there is any detection method for neurotransmitters or any other molecule, atom, or ion based on reusable gold nanoparticles or any other reusable plasmonic nano-objects. The major contribution, realized in the first part of this project, is the development of a new molecular detection method based on ultrastable and recyclable gold nanoparticles which do not aggregate under the most difficult conditions for other types of gold nanoparticles. Furthermore, to achieve the objective of detecting dopamine in situ, the optofluidic system developed in the second part of this project, not only has a spectral resolution comparable to the commercial laboratory spectrophotometer but also contain a fluidic module to allow automatic sampling and the whole system have a volume of only 11 × 9 × 6 cm³.
16

Contrôle du transfert de l'information par la dynamique calcique présynaptique aux synapses formées par les fibres moussues de l'hippocampe

Chamberland, Simon 29 May 2018 (has links)
Les neurones encodent l’information dans le nombre et la fréquence des potentiels d’action qu’ils déchargent. Les patrons de décharge de potentiels d’action enregistrés dans les animaux vivants varient fortement dans leur nombre et leur fréquence. Les variations dans la fréquence et le nombre de potentiel d’action déchargés affectent drastiquement la plasticité à court terme et le transfert de l’information vers la cellule postsynaptique. Comment les terminaux présynaptiques décodent la fréquence et le nombre de potentiel d’action par des dynamiques calciques spécifiques demeure inconnu. Afin d’explorer cette question, nous avons combiné l’imagerie calcique par microscopie deux photons à accès aléatoire avec l’électrophysiologie dans les tranches aiguës d’hippocampe. Nous avons procédé à l’analyse de l’ultrastructure des terminaux synaptique par immunohistochimie et microscopie électronique. Nous avons découvert que la propagation des potentiels d’action des cellules granulaires aux cellules principales du CA3 était dépendante du nombre de potentiel d’action dans une bouffée, mais était indépendante de la fréquence moyenne des potentiels d’action dans la bouffée. Le nombre de potentiel d’action dans une bouffée était encodé par le terminal présynaptique dans l’homogénéisation spatiale des microdomaines calciques. Cette globalisation des microdomaines calciques dans les terminaux présynaptiques supportait le recrutement de site de relâchements additionnels, suffisant pour augmenter grandement l’amplitude des courants postsynaptiques. De plus, les canaux calciques de type P/Q couplés faiblement aux senseurs calciques et localisés à une distance plus grande des zones actives étaient l’élément clé permettant l’homogénéisation des microdomaines calciques et le recrutement de sites de relâchement additionnels. Ainsi, les fibres moussues de l’hippocampe propagent les potentiels d’action vers les cellules principales du CA3 en fonction du nombre de potentiel d’action dans la bouffée, indépendamment de leur fréquence. Cette transmission est possible grâce à la dynamique calcique présynaptique hautement spécialisée qui optimise l’utilisation d’un grand nombre de sites de relâchement. / Neurons encode information in the number and frequency of action potentials they discharge. Action potentials typically occur in bursts of varying number and frequency, with variations in these two parameters dramatically affecting short-term plasticity and the transfer of information to the postsynaptic neuron. How presynaptic terminals decode the frequency and the number of action potentials through calcium dynamics to gate neurotransmitter remains unknown. To investigate this question, we combined random-access two-photon presynaptic calcium imaging in large mossy fiber terminals and electrophysiology in acute hippocampal slices. We further probed the ultrastructure of the mossy fiber terminals using immunohistochemistry and electron microscopy. We found that action potential propagation from hippocampal granule cells to postsynaptic CA3 pyramidal cells was dependent on the number of action potentials (AP) in the granule cell burst, but was independent of the AP burst average frequency. Interestingly, the number of action potentials in a burst was encoded in presynaptic terminals by the spatial homogenization of calcium microdomains. This globalization of calcium microdomains within single presynaptic terminals supported the recruitment of additional release sites, sufficient to increase the EPSC amplitude several fold. Additionally, loosely-coupled P/Q-type VGCCs from calcium sensors provided the functional basis for the homogenization of calcium microdomains and proved essential for the recruitment of additional release sites. Therefore, hippocampal mossy fiber terminals propagate action potentials to CA3 pyramidal cells as a function of the number of action potentials in the burst, but not the frequency. This counting logic is made possible through specialized spatiotemporal calcium dynamics which optimize the use of a large number of release sites.
17

Conception et fabrication d'un biocapteur à haute sensibilité pour la détection des neurotransmetteurs

Ghodsevali, Elnaz 24 April 2018 (has links)
Dans ce mémoire, nous présentons de nouvelles architectures de différents biocapteurs électrochimiques discrets et intégrés appelés potentiostats. Tous les potentiostats développés sont basés sur une structure entièrement différentielle pour une meilleure sensibilité et une meilleure précision. Deux conceptions discrètes à un et quatre canaux ont été proposées. La conception discrète à un canal détecte la molécule de dopamine avec un courant de l’ordre du nA et une consommation électrique de 120 mW. Cette architecture a été développée sur une carte de circuit imprimé (PCB) de 20 mm x 35 mm. L’architecture discrète à quatre canaux est la version améliorée de la précédente en termes de superficie, de sensibilité et de consommation électrique. Une autre version du potentiostat, implémentée sur un PCB de 15 mm x 15 mm, peut mesurer les courants d’oxydoréduction dans la plage du pA avec une consommation de puissance de 60 mW. L’avantage de la structure à multicanaux est qu’elle offre des sensibilités différentes allant du pA au mA pour chaque canal. Une chambre microfluidique de 7,5 mm x 5 mm avec deux entrées et une sortie a été déposée sur le PCB. Une solution saline tampon au phosphate (PBS) avec une solution de ferrocyanure a été utilisée pour tester la fonctionnalité du système réalisé. La voltampérométrie cyclique a été utilisée comme technique de détection. Un comportement linéaire a été observé lorsque la concentration des neurotransmetteurs change. De plus, un potentiostat intégré a été proposé et fabriqué en technologie CMOS 180 nm, basé sur une structure entièrement « différentiel de différence » (Fully Differential Diffrence Amplifier FDDA) pour une faible consommation de puissance et un système à haute sensibilité. Cette nouvelle configuration a été conçue pour la détection des neurotransmetteurs en très faible concentration avec un faible bruit et une plage dynamique élevée. Cette architecture intégrée peut détecter les courants dans une plage inférieure au pA avec un bruit d’entrée faible de 6,9 μVrms tout en consommant seulement 53,9 μW. Le potentiostat proposé est dédié aux dispositifs implantables à faible consommation de puissance et à sensibilité et linéarité élevées. / In this thesis, we present different discrete and integrated electrochemical biosensors. All these designed potentiostats are based on fully-differential architecture to enhance sensitivity and accuracy. Two complete single channel and four-channel discrete designs were fabricated. The single channel discrete design imaged the dopamine neurotransmitter with the sensed current of approximately low nano-ampere and power consumption of 120 mW implemented on a 20 x 35 mm PCB. The four-channel discrete design was the improved version of previous one in terms of area, sensitivity and power consumption. The 15 x 15 mm PCB was able to measure the reduction-oxydation currents in the range of high pico-ampere while consuming 60 mW. The advantage of the multichannel architecture is to provide a system with different sensitivity going from pA to mA for each channel. A microfluidic 7.5 x 5 mm chamber with two inlets and one outlet was bonded to the PCB. A phosphate buffered saline (PBS) with ferrocyanide solution was used to test the functionality of the implemented system. Cyclic voltammetry has been used as a detection technique. A linear behavior had been observed when the neurotransmitter concentration changed. An integrated CMOS potentiostat was designed and fabricated in 180 nm technology based on a fully-differential-difference architecture for a low power consumption and also high sensitivity system. This new architecture was designed in order to sense ultra-low concentration of neurotransmitters with low noise and high dynamic range. This integrated design was able to image currents in the range of sub-pA with low input-referred noise of 6.9 µVrms while consuming only 53.9 µW. The proposed potentiostat is dedicated for implantable devices with low power consumption and high sensitivity and linearity.
18

More transparency in bioanalysis of exocytosis : application of fluorescent false neurotransmitters in coupling methodology of electrochemistry with fluorescence microscopy at ITO microelectrodes / Bioanalyse microélectrochimique de l'exocytose vésiculaire : utilisation de faux neurotransmetteurs fluorescents dans la méthodologie de couplage de l'électrochimie avec la microscopie de fluorescence sur microélectrodes d'ITO

Liu, Xiaoqing 26 September 2016 (has links)
L’exocytose vésiculaire est une voie physiologique majeure de la communication intercellulaire. Dans ce contexte, le TIRFM (microscopie de fluorescence par réflexion totale interne) et l’ampérométrie sont aujourd'hui les deux méthodes analytiques les plus fréquemment utilisées dans l’étude de l’exocytose. En raison de la complémentarité de ces deux techniques d’analyse pour le suivi de la sécrétion exocytotique, leur combinaison pour suivre la sécrétion exocytotique a d'abord été réalisée par notre groupe en 2011. Ce couplage a permis un enregistrement simultané des signaux fluorescents et ampérométriques avec une bonne résolution spatiale et temporelle. L'inconvénient majeur de ce travail reste le chargement indépendant des sondes optique et électrochimique dans les vésicules de sécrétion, ce qui entraîne la détection d’évènements « orphelins » ampérométriques ou optiques ainsi que la faible efficacité de détection des évènements couplés. Par conséquent, dans cette thèse, nous avons tenté de mettre à profit une sonde unique à la fois fluorescente et électroactive pour suivre l’exocytose par la méthodologie couplée TIRFM/ampérométrie. Ainsi, un analogue de neurotransmetteurs monoamine primaire, la 4-(2-amino-éthyl)-6-chloro-7-hydroxy-2H-1-benzopyran-2-one (nommé 1 dans ce travail), a été synthétisé.1 présente une fluorescence forte, stable et pH-dépendante. Lorsque cette entité est excitée à 405 nm, son intensité de fluorescence est presque doublée de pH 5 (valeur intra-vésiculaire) à 7 (valeur milieu extracellulaire). De plus, des études en voltammétrie ont pu mettre en évidence que 1 est oxydable sur électrode de carbone vitreux, microélectrode à fibre de carbone et ITO (oxyde d’indium dopé à l’étain), montrant ainsi une bonne électroactivité. La pénétration cellulaire dans les vésicules de cellules BON N13 a également été démontrée, prouvant la spécificité de l’interaction entre 1 et ces vésicules équipées d’un transporteur de monoamines primaires (VMAT). L’utilisation de 1 comme sonde unique optique et électrochimique pour le suivi de l'exocytose a ensuite été validée séparément dans des cellules BON N13 par TIRFM et ampérométrie. L’enregistrement simultané par fluorescence et électrochimie en utilisant 1 comme sonde double a ensuite été réalisé dans un microdispositif constitué d’électrodes ITO conductrice et transparente. Nos résultats basés sur la sonde unique 1 montrent qu’elle semble plus adaptée que toutes les stratégies antérieures impliquant deux sondes indépendantes. Les résolutions spatiale et temporelle de cette méthode combinée ont permis d'analyser des sécrétions d’exocytose de cellules marquées par 1. Une analyse ultérieure de ces signaux couplés optique et électrochimique sera à même d’étudier la corrélation entre le comportement du pore de fusion (dynamique d'ouverture/de fermeture, stabilité..) détecté par ampérométrie et le mouvement d'une vésicule en trois dimensions (ancrage, amarrage, fusion puis retrait dans le cytoplasme) détecté par TIRFM. / Vesicular exocytosis is a ubiquitous way for intercellular communications. TIRFM (total internal reflection fluorescence microscopy) and amperometry are nowadays the two most frequently used analytical methods with complementary features for its investigation. The combination of these two analytical techniques to track exocytotic secretions was firstly achieved by our group in 2011 and this new technique was demonstrated to show both high temporal and spatial resolutions by simultaneously recording the fluorescent and amperometric signals. The major disadvantage of this former work was the independent loading of optical and electrochemical probes to the secretory vesicles, which resulted in 'sightless' amperometric or optical signals as well as low coupling efficiency. Therefore, in this thesis, we attempted to develop a unique probe with dual fluorescent/electrochemical characteristics to track exocytotic process by TIRFM/amperometry coupling technique. This is why an analog of biogenic monoamine neurotransmitters, 4-(2-aminoethyl)-6-chloro-7-hydroxy-2H-1-benzopyran-2-one hydrochloride (named as 1 in this work) was synthesized. 1 exhibited bright, stable, pH-dependent fluorescence. When excited at 405 nm, its fluorescence intensity was almost doubled with the increase of pH values from 5 (similar to that in the vesicular lumen) to 7 (similar to the extracellular medium). Furthermore, in voltammetry, 1 was demonstrated to be easily electrooxidized on GCE (glassy carbon electrode), CFE (carbon fiber electrode) and ITO (indium tin oxide) electrodes surfaces, showing good electroactivity. 1 was also shown to penetrate easily into the vesicles of BON N13 cells within 1 hour incubation, testifying its specific affinity with these VMAT-equipped (vesicular monoamine transporter) vesicles. The applications of 1 as optical and electrochemical probes for exocytosis monitoring were then separately validated in BON N13 cells by TIRFM and amperometry measurements, respectively. Simultaneous recording of fluorescent and amperometric information by using 1 dual probes loaded cells was subsequently acquired in a microfabricated device constituted by conductive and transparent ITO electrodes. Our results based on the unique probe 1 for electrochemical and fluorescent detection of exocytotic release seemed more adapted than all the previous works involving independent probes. The high spatial and temporal resolutions of this combined method also allowed analyzing consecutive exocytotic secretions as well as overlapped events in 1-stained cells. Further analysis of these two signals with complementary information will shed more light on the correlation of the fusion pore behavior (opening/closure dynamics, stability…) measured by amperometry and the motion of a secretory vesicle in three dimensions (tethering, docking, fusion and retrieval) detected by TIRFM.
19

Développement de nouvelles méthodes séparatives compatibles avec une détection par spectrométrie de masse et par électrochimie pour l'analyse des traces de catécholamines et molécules apparentées

Chirita, Raluca-Ioana 27 November 2009 (has links) (PDF)
Les catécholamines et les indolamines font partie de la famille des neurotransmetteurs. Un déséquilibre dans leur concentration peut être associé à différentes maladies telles les maladies de Parkinson et Alzheimer, la dépression ou la schizophrénie. C'est pourquoi le développement de méthodes de dosage spécifiques et très sensibles du fait de leurs très faibles teneurs dans les fluides biologiques est nécessaire. Dans un premier temps nous avons développé une méthode chromatographique en appariement d'ions (IP-LC) utilisant des colonnes C18 de nouvelle génération (monolithique et « fused core ») et l'acide nonafluoropentanoïque, comme agent d'appariement d'ions volatil. Cette méthode est compatible avec une détection SM en mode d'ionisation positive. Dans un deuxième temps, différents systèmes en mode HILIC ont été évalués. Le choix raisonné de la phase stationnaire offrant la meilleure séparation du mélange de catécholamines a pu être réalisé après avoir testé l'influence sur la séparation des différents groupements fonctionnels disponibles : groupement soit neutre (greffage diol, amide, ou cyano), soit positivement chargé (greffage amino ou triazole) soit négativement chargé (silice vierge avec particules totalement poreuses ou partiellement poreuses « fused core ») ou zwitterionique (greffage sulfobetaïne). La méthode HILIC présente l'avantage d'être compatible aussi bien avec une détection SM en mode d'ionisation positive que négative. Les deux méthodes (IP-LC et HILIC) ont été comparées en termes de résolution, efficacité et limites de détection (LOD), linéarité et répétabilité. Les LODs obtenues sont comprises entre 1 et 100 ng.mL-1. Pour pouvoir doser des teneurs plus faibles, une méthode de pré-concentration de l'échantillon a été développée en associant 2 supports différents (Oasis HLB et PGC). La méthode optimisée SPE-CPL-MS/MS a été enfin appliquée à un extrait de cerveau de mouton.
20

Effects of combined applications of ethanol and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) in vitro and in vivo Focus on presynaptic 5-HT1b auto- and heteroreceptors and their possible overexpression using HSV-1-mediated gene transfer /

Riegert, Céline Cassel, Jean-Christophe. Jackisch, R.. January 2008 (has links) (PDF)
Thèse doctorat : Neurosciences : Strasbourg 1 : 2007. Thèse doctorat : Neurosciences : Freiburg - Allemagne : 2007. / Thèse soutenue en co-tutelle. Titre provenant de l'écran-titre. Bibliogr. p. 204-228.

Page generated in 0.1637 seconds