• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 8
  • 5
  • 2
  • 1
  • Tagged with
  • 65
  • 65
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Purificação de células troco de lipoaspirado humano por aptâmeros de DNA, seguida da caracterização dos fenótipos obtidos da diferenciação neuronal / Human adipose mesechymal stem cell separation by DNA aptamers followed by the characterization of the obtained phenotypes from neuronal differentiation

Arthur Andrade Nery 14 May 2014 (has links)
Células tronco mesenquimais de tecido adiposo, são uma promissora ferramenta para aplicações clínicas em terapias celular e regenerativa, em vista da facilidade de sua extração e da maior quantidade de células por unidade de massa de tecido quando comparado a outras fontes clássicas de células mesenquimais como medula óssea. O protocolo clássico de extração e purificação dessas células, depende de sua adesão em plástico e xeno-materiais demandando muito tempo para ser utilizado por médicos para auxiliar pacientes em procedimentos de emergência. Estas células são capazes se diferenciar em diversos tipos celulares, o que as torna boas candidatas para terapia celular, embora sua capacidade de transdiferenciação para fenótipos neuronais seja ainda discutida. Neste trabalho demonstramos um novo processo para isolar essas células na base de epitopos específicos expressos (assinatura molecular de superfície) utilizando aptâmeros como ligantes de alta afinidade para estes sitios. Aptâmeros, moléculas de DNA simples fita identificadas a partir de uma biblioteca combinatória de sequencias de DNA simples-fita foram identificados por ciclos reiterativos de seleção in vitro (SELEX) utilizando células tronco do lipoaspirado como alvo. Dois aptâmeros isolados, denominados APT9 e APT11, foram capazes de identificar subpopulações (15,8 e 23,7% respectivamente) dentre as células tronco mesenquimais (classicamente CD29+/CD90+/CD45-) e separá-las usando nano-partículas magnéticas acopladas aos aptâmeros. Além disso, seguindo uma indução para diferenciação neuronal, as células tronco mesenquimais passam a apresentar morfologia neuronal e apresentam expressão e atividade de diversos receptores de neurotransmissores, avaliados por PCR real-time e imageamento de variações da concentração de cálcio intracelular ápos stimulação com vários agonistas de receptores metatrópicos e ionotrópicos. Ao longo da diferenciação, os níveis transcricionais de mRNA de receptores de cininas (B1 e B2), nicotínicos (alfa 7), muscarínicos (M1, M3 e M4), glutamatérgicos (AMPA2 e mGluR2), purinérgicos (P2Y1 e P2Y4) e GABAergicos (GABA-A, subunidade 3) e da óxido nítrico sintase neural aumentaram quando comparados aos níveis das células não diferenciadas, enquanto que os níveis de expressão de outros receptores incluindo purinérgicos P2X1, P3X4, P2X7 e P2Y6 e muscarínico M5 diminuíram. Os níveis de atividade das classes dos receptores estudados, por imageamento de variações da concentração de cálcio intrac, aumentaram para a maioria dos agonistas analisados durante a diferenciação neuronal com exceção para respostas induzidas por glutamato e NMDA. Células diferenciadas expressavam altos níveis de antígenos específicos de neurônios como β3-tubulina, NF-H, NeuN e MAP-2 indicando uma diferenciação em fenótipo neuronal bem sucedida. Desta maneira, esta tese, ao identificar aptâmeros, prove uma inovadora solução para médicos usarem as células tronco mesenquimais dentro de uma sala de cirurgia, através de um método que é capaz de purificar essas células em um tempo clínico viável, com pureza e sem contato com contaminantes. Além disso, nós mostramos aqui que com um protocolo como o proposto para diferenciação neuronal, nós poderíamos induzir essas células para se diferenciar em neurônios, através da ativação de fatores de transcrição específicos, levando às células tronco mesenquimais a serem possivelmente utilizadas em terapias celulares de reparo neuronal. / Adipose mesenchymal stem cells are promising tools for clinical applications in cellular and regeneration therapies, in view of easiness of extraction and higher amount of isolated stem cells per mass of tissue when compared to other classical mesenchymal stem cell sources including bone marrow. The classical protocol to extract and purify these cells, depending on plastic adherence and xeno-materials, is too time consuming to be used by physicians to help patients at emergency procedures. These cells are able to differentiate into various cell types, making them good candidates for cell therapy, however their capability for transdifferentiation into neural phenotypes is yet discussed. Here we show a novel process to isolate these cells using their surface molecular signature and aptamers, ssDNA molecules identified through the SELEX technique, denominated APT9 and APT11 that are able to identify subpopulations (15,8 and 23,7% respectively) within the mesenchymal stem cells (classically CD29+/CD90+/CD45-) and separate them using magnetic nano-particles attached to the aptamers. Moreover, following induction to neural differentiation, mesenchymal cells presents neuronal morphology and present expression and activity of several neurotransmitter receptors, as evaluated by real-time PCR and calcium imaging. During this process, mRNA transcription levels of bradykinin (B1 and B2), cholinergic (alpha 7), muscarinic (M1, M3 and M4), glutamatergic (AMPA2 and mGlu2), purinergic (P2Y1 and P2Y4) and GABAergic (GABA-A, subunit 3) receptors and neuronal nitric oxide synthase were augmented when compared to levels of undifferentiated cells, while the expression levels of other receptors including purinergic P2X1, P2X4, P2X7 and P2Y6 and muscarinic M5 receptors were down-regulated. Activity levels of the studied receptor classes, as studied by calcium imaging, increased for most of the agonists analyzed during the neuronal differentiation with the exception for glutamate- and NMDA-induced receptor responses. Differentiated cells expressed high levels of neuron-specific antigens such as β3-tubulin, NF-H, NeuN and MAP-2, indicating a successful differentiation into neuronal phenotypes. This thesis, by identifying aptamers, provides a novel solution for physicians to use mesenchymal stem cells inside a surgery room, by using a method that are able to purify the cells in a clinical viable time, with purity and no contact with contaminats. Furthermore, we show here that with a protocol as provided for neuronal differentiation, we could induce these cells to differentiate into neurons, by activating specific transcription factors,making mesenchymal stem cells to possibly be used in neuronal repair cell therapies.
62

Differential regulation of GABAB receptor trafficking by different modes of N-methyl-D-aspartate (NMDA) receptor signaling

Kantamneni, Sriharsha, Gonzàlez-Gonzàlez, I.M., Luo, J., Cimarosti, H., Jacobs, S.C., Jaafari, N., Henley, J.M. 2013 December 1924 (has links)
Yes / Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival. / BBSRC, MRC and the European Research Council
63

Peri-adolescent Alcohol Consumption Enhances the Reinforcing and Stimulatory Properties of Ethanol within the Adult Mesolimbic Dopamine System in Alcohol Preferring P Rats

Toalston, Jamie E. 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Research in the alcohol preferring (P) rat has indicated that peri-adolescent alcohol (EtOH) consumption enhances the acquisition of oral operant EtOH self-administration, inhibits the extinction of responding for EtOH, augments EtOH-seeking behaviors, and increases relative reward value of EtOH during adulthood. Experiment 1 was conducted to determine if these adult effects of peri-adolescent EtOH intake could be observed using an Intracranial Self-Administration (ICSA) model. It was hypothesized that an increased sensitivity to the rewarding actions of EtOH would be manifested in peri-adolescent-EtOH-exposed subjects compared to naive subjects when the opportunity to self-administer EtOH to the posterior ventral tegmental area (pVTA) is available in adulthood. The pVTA is a primary site for EtOH’s reinforcing and rewarding properties in the mesolimbic dopamine (DA) system. Experiment 2 was a dose-response examination of the effects of EtOH administered to the pVTA on downstream DA efflux in the nucleus accumbens shell (AcbSh) via a joint Microinjection-Microdialysis (MicroMicro) procedure. Male P rats were given 24-h free-choice exposure to 15% volume/volume EtOH from postnatal day (PD) 30 to PD 60, or remained experimentally naive, with ad lib food and water. By the end of the periadolescent exposure period, average consumption was 7.3 g/kg/day of EtOH. After PD 75, periadolescent-EtOH-exposed and naïve rats were either implanted with an injector guide cannula aimed at the right pVTA for ICSA (Experiment 1), or two cannulae, one aimed at the right pVTA (injector) and one at the ipsilateral AcbSh (microdialysis) for MicroMicro (Experiment 2). Following one week of recovery from surgery, ICSA subjects were placed in standard two-lever (active and inactive) operant chambers. Test sessions were 60 min in duration and occurred every other day for a total of 7 sessions. Rats were randomly assigned to one of 5 groups (n=4-9/group) that self-infused (FR1 schedule) either aCSF (vehicle, 0 mg%), 50, 75, 100, or 150 mg% EtOH during 4 sessions, aCSF only for sessions 5 and 6 (extinction), and the initial concentration again for session 7 (reinstatement). MicroMicro subjects received six days of recovery from surgery, probe implantation the day before testing, and then continuous microdialysis for DA with 15 min microdialysis samples collected before, during, and then two hrs after 10-min pulse microinjection of either aCSF (vehicle, 0 mg%), 50, 75, 100, or 150 mg% EtOH. Neither EtOH-exposed nor naive groups of P rats self-infused the aCSF or 50 mg% EtOH concentration. While the naive group did not self-infuse the 75 or 100 mg% EtOH concentrations, the peri-adolescent EtOH-exposed group of P rats did readily discriminate the active lever from the inactive lever at these concentrations. Both groups self-infused the 150 mg% EtOH concentration. Pulse microinjections of EtOH during the MicroMicro procedure revealed that 75 and 100 mg% concentrations of EtOH increased downstream DA in the AcbSh of EtOH-exposed, but not naïve, subjects. 150 mg% EtOH increased downstream DA in both adolescent treatment groups. Overall, the results indicate that consumption of EtOH by P rats during peri-adolescence increases the reinforcing properties of EtOH in the pVTA in adulthood. The results also indicate that there were differential effects of peri-adolescent EtOH exposure on DA efflux in the AcbSh. This provides evidence that peri-adolescent EtOH-exposure produces long-lasting alterations in neural circuitry involved in EtOH-reinforcement, during adulthood.
64

Assessment of the dopamine system in addiction using positron emission tomography

Albrecht, Daniel Strakis January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Drug addiction is a behavioral disorder characterized by impulsive behavior and continued intake of drug in the face of adverse consequences. Millions of people suffer the financial and social consequences of addiction, and yet many of the current therapies for addiction treatment have limited efficacy. Therefore, there is a critical need to characterize the neurobiological substrates of addiction in order to formulate better treatment options. In the first chapter, the striatal dopamine system is interrogated with [11C]raclopride PET to assess differences between chronic cannabis users and healthy controls. The results of this chapter indicate that chronic cannabis use is not associated with a reduction in striatal D2/D3 receptor availability, unlike many other drugs of abuse. Additionally, recent cannabis consumption in chronic users was negatively correlated with D2/D3 receptor availability. Chapter 2 describes a retrospective analysis in which striatal D2/D3 receptor availability is compared between three groups of alcohol-drinking and tobacco-smoking subjects: nontreatment-seeking alcoholic smokers, social-drinking smokers, and social-drinking non-smokers. Results showed that smokers had reduced D2/D3 receptor availability throughout the striatum, independent of drinking status. The results of the first two chapters suggest that some combustion product of marijuana and tobacco smoke may have an effect on striatal dopamine concentration. Furthermore, they serve to highlight the effectiveness of using baseline PET imaging to characterize dopamine dysfunction in addictions. The final chapter explores the use of [18F]fallypride PET in a proof-of-concept study to determine whether changes in cortical dopamine can be detected during a response inhibition task. We were able to detect several cortical regions of significant dopamine changes in response to the task, and the amount of change in three regions was significantly associated with task performance. Overall, the results of Chapter 3 validate the use of [18F]fallypride PET to detect cortical dopamine changes during a impulse control task. In summary, the results reported in the current document demonstrate the effectiveness of PET imaging as a tool for probing resting and activated dopamine systems in addiction. Future studies will expand on these results, and incorporate additional methods to further elucidate the neurobiology of addiction.
65

Chronic Ethanol Drinking by Alcohol-preferring Rats Increases the Sensitivity of the Mesolimbic Dopamine System to the Reinforcing and Stimulating Effects of Cocaine

Oster, Scott M. 20 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alcohol and cocaine are commonly co-abused drugs, and those meeting criteria for both cocaine and alcohol use disorders experience more severe behavioral and health consequences than those with a single disorder. Chronic alcohol (ethanol) drinking increased the reinforcing and dopamine (DA) neuronal stimulating effects of ethanol within mesolimbic regions of the central nervous system (CNS) of alcohol-preferring (P) rats. The objectives of the current study were to determine if chronic continuous ethanol drinking produced: (1) alterations in the sensitivity of the nucleus accumbens shell (AcbSh) to the reinforcing effects of cocaine, (2) changes in the magnitude and time course of the local stimulating effects of cocaine on posterior ventral tegmental area (pVTA) DA neurons, and (3) a persistence of alterations in the stimulating effects of cocaine after a period of protracted abstinence. Female P rats received continuous, free-choice access to water and 15% v/v ethanol for at least 10 wk (continuous ethanol-drinking; CE) or access to water alone (ethanol-naïve; N). A third group of rats received the same period of ethanol access followed by 30 d of protracted abstinence from ethanol (ethanol-abstinent; Ab). CE and Ab rats consumed, on average, 6-7 g/kg/d of ethanol. Animals with a single cannula aimed at the AcbSh responded for injections of cocaine into the AcbSh during four initial operant sessions. Cocaine was not present in the self-infused solution for the subsequent three sessions, and cocaine access was restored during one final session. Animals with dual ipsilateral cannulae aimed at the AcbSh and the pVTA were injected with pulsed microinfusions of cocaine into the pVTA while DA content was collected for analysis through a microdialysis probe inserted into the AcbSh. During the initial four sessions, neither CE nor N rats self-infused artificial cerebrospinal fluid (aCSF) or 0.1 mM cocaine into the AcbSh. CE, but not N, rats self-administered 0.5 mM cocaine into the AcbSh, whereas both groups self-infused concentrations of 1.0, 2.0, 4.0, or 8.0 mM cocaine. When cocaine access was restored in Session 8, CE rats responded more on the active lever and obtained more infusions of 0.5, 1.0, 2.0, or 4.0 mM cocaine compared to N rats. Microinjection of aCSF into the pVTA did not alter AcbSh DA levels in N, CE, or Ab rats. Microinjections of 0.25 mM cocaine into the pVTA did not significantly alter AcbSh DA levels in N animals, moderately increased DA levels in CE rats, and greatly increased DA levels in Ab rats. Microinjections of 0.5 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals, robustly increased DA levels in CE rats, and did not significantly alter DA levels in Ab rats. Microinjections of 1.0 or 2.0 mM cocaine into the pVTA modestly increased AcbSh DA levels in N animals but decreased DA levels in CE and Ab rats. Overall, long-term continuous ethanol drinking by P rats enhanced both the reinforcing effects of cocaine within the AcbSh and the stimulatory and inhibitory effects of cocaine on pVTA DA neurons. Alterations in the stimulatory and inhibitory effects of cocaine on pVTA DA neurons were not only enduring, but also enhanced, following a period of protracted abstinence from ethanol exposure. Translationally, prevention of chronic and excessive alcohol intake in populations with a genetic risk for substance abuse may reduce the likelihood of subsequent cocaine use.

Page generated in 0.166 seconds