Spelling suggestions: "subject:"neurovascular unit"" "subject:"neurovascular knit""
1 |
Systematic ultrastructural analyses of meningeal and parenchymal vessels of the central nervous systemDyrna, Felix 26 March 2019 (has links)
The direct endothelial contact with adjacent astrocytic end-feet is believed to establish blood-brain barrier (BBB) typical characteristics in endothelial cells of the central nervous system (CNS). However, this contact is only present in capillary vessels of the brain parenchyma and absent in larger veins, arteries and vessels within the meninges. To investigate a potential impact of direct endothelial interactions with adjacent astrocytic end-feet on the molecular tight junction (TJ) composition and ultrastructure, we performed a systematic analysis of endothelial cell contacts within the vascular tree of parenchymal and leptomeningeal vessels. Immunofluorescence labeling for claudin-3, claudin-5, zonula occludens-1 and occludin was used to compare the molecular composition, without showing significant differences in their distribution along the vascular tree of parenchymal and leptomeningeal vessels. Furthermore, electron microscopy in combination with quantitative analyses was performed to investigate the endothelial ultrastructure revealing significant differences within the length of endothelial overlaps between the different vessel types. Here, parenchymal arteries exhibit noticeably longer cell contacts compared to capillaries, which could not be observed in leptomeningeal vessels. It was also observed that arterial vessels regularly contain a higher density of endothelial vesicles throughout the parenchyma and meninges as a sign for transendothelial traffic. Hence, endothelial expression of blood-brain barrier typical TJs is not limited to capillary vessels with an intimate contact to surrounding astrocytes, but is also observed in arteries and veins of the brain parenchyma as well as the meninges, the latter of which are lacking a direct astrocyte-endothelial interaction. These vessel-specific characteristics can now be used to address and compare alterations of the BBB in different settings of CNS pathologies.:Table of Content
1. INTRODUCTION 4
1.1 THE BLOOD-BRAIN BARRIER 4
1.2 HISTORY 5
1.3 STRUCTURE AND COMPOSITION 6
1.4 THE ROLE OF THE MICROENVIRONMENT 8
1.4.1 ASTROCYTES 8
1.4.2 PERICYTES 9
1.5 BLOOD BRAIN BARRIER FUNCTION 10
1.5.1 PHYSIOLOGIC CONDITIONS 10
1. 5.2 PATHOLOGIC CONDITIONS 11
2. OPEN QUESTIONS AND SCIENTIFIC APPROACH 12
3. PUBLICATIONS 13
3.1 DIFFERENT SEGMENTS OF THE CEREBRAL VASCULATURE REVEAL SPECIFIC ENDOTHELIAL SPECIFICATIONS, WHILE TIGHT JUNCTION PROTEINS APPEAR EQUALLY DISTRIBUTED 13
3.2 THE BLOOD-BRAIN BARRIER 28
4. SUMMARY 40
5. REFERENCES 43
6. PROOF OF SIGNIFICANT CONTRIBUTION 48
7. DECLARATION OF ACADEMIC HONESTY 49
8. ACKNOWLEDGMENT 50
9. CURRICULUM VITAE 51
|
2 |
Exploring causes of pericyte expansion in postnatal brain of Rbpj-mediated mouse model of arteriovenous malformationKandalai, Shruthi M. 18 May 2021 (has links)
No description available.
|
3 |
Model mozkové fokální korové ischémie a jeho parametrizace / Model of cerebral focal cortical ischemia and its parametrizationSvoboda, Jan January 2015 (has links)
Title of work: Model of cerebral focal cortical ischemia and its parametrization Work objectives: The aim of this diploma thesis was to apply modified model of focal cortical brain ischemia induced by phototrombosis and subsequently determinate its parameters. Methods: Intravenous application of photosensitive Rose Bengal dye was followed by continual illumination of green laser beam over the left sensorimotocortex for 10 minutes. Following illumination, the dye is activated and produces singlet oxygen that damages components of endothelial cell membranes, with subsequent platelet aggregation and thrombin formation, which eventually determines the interruption of local blood flow. This approach, initially proposed by Rosenblum and El-Sabban in 1977, was later improved by Watson in 1985 in rat brain. For histological evaluation of ischemic brain damage, animals were overdosed with urethane and transcardially perfused. Results: Histological examination of brains showed significant ischemic damage in all experimental animals. Lesion was located in left hemisphere and penetrated thought the grey matter in various extents. Size of lesion, its localization and depth has shown only a small variability in the individual groups. Noticeable differences were found right after comparing experimental groups....
|
4 |
THE EFFECTS OF EXERCISE PRECONDITIONING ON FOCAL ISCHEMIC STROKEGrohs, Gillian 01 January 2017 (has links)
Cleaved fragments of the extracellular matrix protein perlecan have been shown to promote neuroprotection and repair after ischemic stroke. The cysteine proteases cathepsin B and L as well as the metalloprotease bone morphogenic protein 1 (BMP-1) are capable of releasing the biologically active C-terminal laminin-like globular domain (LG3) of perlecan. Exercise, a known method of reducing stroke risk and severity, has been shown to increase the expression of some proteases associated with perlecan processing. Using a transient distal middle cerebral artery occlusion (MCAo) model for focal ischemic stroke we show that while 7 days of running only slightly decreased infarct volume, BMP1 and perlecan (HSPG2) RNA expression in skeletal muscle was significantly increased in 3-month-old male wild type C57/BL6 mice. Moreover, elevated levels of BMP1 RNA were still detectable after 3 days of detraining, suggesting a prolonged effect of exercise on BMP1 expression. Levels of LG3 in the blood were below the limit of detection in the current study, however it is likely that a more sensitive method would enable analysis of serum. These preliminary findings suggest that LG3 could be a molecular mediator of neuroprotection afforded by exercise though further studies are required.
|
5 |
Analyzing consequences to astrocytes in a mouse model of brain arteriovenous malformationWard, Brittney M. 18 May 2021 (has links)
No description available.
|
6 |
Regionally Altered Immunosignals of Surfactant Protein-G, Vascular and Non-Vascular Elements of the Neurovascular Unit after Experimental Focal Cerebral Ischemia in Mice, Rats, and SheepMichalski, Dominik, Reimann, Willi, Spielvogel, Emma, Mages, Bianca, Biedermann, Bernd, Barthel, Henryk, Nitzsche, Björn, Schob, Stefan, Härtig, Wolfgang 20 January 2024 (has links)
The surfactant protein-G (SP-G) has recently been discovered in the brain and linked to
fluid balance regulations. Stroke is characterized by impaired vessel integrity, promoting water
influx and edema formation. The neurovascular unit concept (NVU) has been generated to cover not
only ischemic affections of neurons or vessels but also other regionally associated cells. This study
provides the first spatio-temporal characterization of SP-G and NVU elements after experimental
stroke. Immunofluorescence labeling was applied to explore SP-G, vascular and cellular markers
in mice (4, 24, and 72 h of ischemia), rats (24 h of ischemia), and sheep (two weeks of ischemia).
Extravasated albumin indicated vascular damage within ischemic areas. Quantifications revealed
decreasing SP-G signals in the ischemia-affected neocortex and subcortex. Inverse immunosignals
of SP-G and vascular elements existed throughout all models. Despite local associations between
SP-G and the vasculature, a definite co-localization was not seen. Along with a decreased SP-
G-immunoreactivity in ischemic areas, signals originating from neurons, glial elements, and the
extracellular matrix exhibited morphological alterations or changed intensities. Collectively, this
study revealed regional alterations of SP-G, vascular, and non-vascular NVU elements after ischemia,
and may thus stimulate the discussion about the role of SP-G during stroke.
|
7 |
Tricellulin, α-Catenin and Microfibrillar-Associated Protein 5 Exhibit Concomitantly Altered Immunosignals along with Vascular, Extracellular and Cytoskeletal Elements after Experimental Focal Cerebral IschemiaHöfling, Corinna, Roßner, Steffen, Flachmeyer, Bianca, Krueger, Martin, Härtig, Wolfgang, Michalski, Dominik 29 August 2024 (has links)
Along with initiatives to understand the pathophysiology of stroke in detail and to identify neuroprotective targets, cell-stabilizing elements have gained increasing attention. Although cell culture experiments have indicated that tricellulin, α-catenin and microfibrillar-associated protein 5 (MFAP5) contribute to cellular integrity, these elements have not yet been investigated in the ischemic brain. Applying immunofluorescence labeling, this study explored tricellulin, MFAP5 and α-catenin in non-ischemic and ischemic brain areas of mice (24, 4 h of ischemia) and rats (4 h of ischemia), along with collagen IV and fibronectin as vascular and extracellular matrix constituents and microtubule-associated protein 2 (MAP2) and neurofilament light chain (NF-L) as cytoskeletal elements. Immunosignals of tricellulin and notably MFAP5 partially appeared in a fiber-like pattern, and α-catenin appeared more in a dotted pattern. Regional associations with vascular and extracellular constituents were found for tricellulin and α-catenin, particularly in ischemic areas. Due to ischemia, signals of tricellulin, MFAP5 and α-catenin decreased concomitantly with MAP2 and NF-L, whereby MFAP5 provided the most sensitive reaction. For the first time, this study demonstrated ischemia-related alterations in tricellulin, MFAP5 and α-catenin along with the vasculature, extracellular matrix and cytoskeleton. Confirmatory studies are needed, also exploring their role in cellular integrity and the potential for neuroprotective approaches in stroke.
|
8 |
Caractérisation neuro-immunitaire d'un modèle d'encéphalomyélite auto-immune expérimentale spontanéeSaint-Laurent, Olivia 08 1900 (has links)
La sclérose en plaques est une maladie neuroinflammatoire idiopathique caractérisée
par la formation de lésions focales de démyélinisation, qui apparaissent suite à l’infiltration périvasculaire de cellules immunitaires et à l’augmentation de la perméabilité de la barrière hémato-encéphalique. L’encéphalomyélite auto-immune expérimentale (EAE) est le modèle animal de cette maladie. Cependant, ce modèle présente des différences importantes avec la sclérose en plaques.
L’objectif de ce projet de maîtrise était d’approfondir la caractérisation d’un nouveau
modèle transgénique d’encéphalomyélite auto-immune expérimentale spontanée, le modèle TCR1640, afin de valider celui-ci pour l’étude des phénomènes physiopathologiques qui surviennent à différents stades de la sclérose en plaques, ainsi que pour le développement de nouveaux traitements de la maladie. La souris TCR1640 porte un récepteur des cellules T (TCR) transgénique autoréactif, qui reconnaît un peptide de la myéline et déclenche une réaction auto-immune contre la myéline endogène au sein du système nerveux central (SNC).
Des observations faites in situ et in vitro ont permis d’identifier des changements qui
surviennent de façon très précoce dans l’unité neurovasculaire chez les animaux TCR1640 présymptomatiques, et qui sont liés à la présence d’un profil immunitaire périphérique proinflammatoire. Lors des phases actives de l’EAE spontanée, les animaux TCR1640 au stade chronique présentent une inflammation accrue du système nerveux central associée à une infiltration leucocytaire massive, par rapport aux animaux au stade aigu de la maladie.
Une étude in vivo a également permis de moduler la maladie développée par des
animaux ayant subi une immunisation passive avec des cellules T auxiliaires en provenance de souris TCR1640. Enfin, l’implication de nouvelles molécules d’adhésion cellulaire dans le développement et le maintien de l’EAE spontanée a été suggérée par des observations in vitro.
L’ensemble de ces résultats suggère que le modèle TCR1640 présente plusieurs
avantages pour l’étude de la physiopathologie de maladies neuroinflammatoires telles que la sclérose en plaques, et servira d’outil afin de valider de nouvelles stratégies thérapeutiques. / Multiple sclerosis is an idiopathic inflammatory disease of the central nervous system.
It is characterized by the formation of focal perivascular lesions and demyelination of the
surrounding area, which appear concomitantly to a massive immune cell infiltration and
disruption of the blood brain barrier. Experimental autoimmune encephalomyelitis is the
animal model most extensively used for the study of multiple sclerosis. Unfortunately, this
model does not mimic many aspects of the human disease.
The goal of this project is to further the characterization of a new transgenic model of
spontaneous experimental autoimmune encephalomyelitis, the TCR1640 model, and to
validate it as a relevant tool for the study of multiple sclerosis physiopathology and treatment.
The TCR1640 mouse possesses a transgenic T cell receptor which recognizes a myelin peptide
and triggers an autoimmune response against endogenous myelin in the central nervous
system.
In situ and in vitro observations have led to the identification of early changes which
appear at the neurovascular unit in presymptomatic TCR1640 animals. This early disruption of
blood brain barrier homeostasis is linked to the establishment of a proinflammatory immune
profile in the periphery. Animals at the chronic stage show sustained inflammation of the
central nervous system parenchyma and massive leukocyte infiltration, compared to animals in
acute phase of disease.
An in vivo experiment has allowed modulating the disease by treatment with a multiple
sclerosis-approved therapy, in wild type mice which had received reactivated CD4+ T cells
from TCR1640 animals. Finally, the implication of new cell adhesion molecules in the
development and maintenance of spontaneous experimental autoimmune encephalomyelitis
has been suggested by in vitro study of melanoma cell adhesion molecule (CD146) and
activated leucocyte cell adhesion molecule (CD166).
The results obtained in this study suggest that the TCR1640 model is a valuable asset
in the study of neuroimmune diseases such as multiple sclerosis. It could also be used to
validate new therapeutic strategies for the treatment of this disease.
|
9 |
Caractérisation neuro-immunitaire d'un modèle d'encéphalomyélite auto-immune expérimentale spontanéeSaint-Laurent, Olivia 08 1900 (has links)
La sclérose en plaques est une maladie neuroinflammatoire idiopathique caractérisée
par la formation de lésions focales de démyélinisation, qui apparaissent suite à l’infiltration périvasculaire de cellules immunitaires et à l’augmentation de la perméabilité de la barrière hémato-encéphalique. L’encéphalomyélite auto-immune expérimentale (EAE) est le modèle animal de cette maladie. Cependant, ce modèle présente des différences importantes avec la sclérose en plaques.
L’objectif de ce projet de maîtrise était d’approfondir la caractérisation d’un nouveau
modèle transgénique d’encéphalomyélite auto-immune expérimentale spontanée, le modèle TCR1640, afin de valider celui-ci pour l’étude des phénomènes physiopathologiques qui surviennent à différents stades de la sclérose en plaques, ainsi que pour le développement de nouveaux traitements de la maladie. La souris TCR1640 porte un récepteur des cellules T (TCR) transgénique autoréactif, qui reconnaît un peptide de la myéline et déclenche une réaction auto-immune contre la myéline endogène au sein du système nerveux central (SNC).
Des observations faites in situ et in vitro ont permis d’identifier des changements qui
surviennent de façon très précoce dans l’unité neurovasculaire chez les animaux TCR1640 présymptomatiques, et qui sont liés à la présence d’un profil immunitaire périphérique proinflammatoire. Lors des phases actives de l’EAE spontanée, les animaux TCR1640 au stade chronique présentent une inflammation accrue du système nerveux central associée à une infiltration leucocytaire massive, par rapport aux animaux au stade aigu de la maladie.
Une étude in vivo a également permis de moduler la maladie développée par des
animaux ayant subi une immunisation passive avec des cellules T auxiliaires en provenance de souris TCR1640. Enfin, l’implication de nouvelles molécules d’adhésion cellulaire dans le développement et le maintien de l’EAE spontanée a été suggérée par des observations in vitro.
L’ensemble de ces résultats suggère que le modèle TCR1640 présente plusieurs
avantages pour l’étude de la physiopathologie de maladies neuroinflammatoires telles que la sclérose en plaques, et servira d’outil afin de valider de nouvelles stratégies thérapeutiques. / Multiple sclerosis is an idiopathic inflammatory disease of the central nervous system.
It is characterized by the formation of focal perivascular lesions and demyelination of the
surrounding area, which appear concomitantly to a massive immune cell infiltration and
disruption of the blood brain barrier. Experimental autoimmune encephalomyelitis is the
animal model most extensively used for the study of multiple sclerosis. Unfortunately, this
model does not mimic many aspects of the human disease.
The goal of this project is to further the characterization of a new transgenic model of
spontaneous experimental autoimmune encephalomyelitis, the TCR1640 model, and to
validate it as a relevant tool for the study of multiple sclerosis physiopathology and treatment.
The TCR1640 mouse possesses a transgenic T cell receptor which recognizes a myelin peptide
and triggers an autoimmune response against endogenous myelin in the central nervous
system.
In situ and in vitro observations have led to the identification of early changes which
appear at the neurovascular unit in presymptomatic TCR1640 animals. This early disruption of
blood brain barrier homeostasis is linked to the establishment of a proinflammatory immune
profile in the periphery. Animals at the chronic stage show sustained inflammation of the
central nervous system parenchyma and massive leukocyte infiltration, compared to animals in
acute phase of disease.
An in vivo experiment has allowed modulating the disease by treatment with a multiple
sclerosis-approved therapy, in wild type mice which had received reactivated CD4+ T cells
from TCR1640 animals. Finally, the implication of new cell adhesion molecules in the
development and maintenance of spontaneous experimental autoimmune encephalomyelitis
has been suggested by in vitro study of melanoma cell adhesion molecule (CD146) and
activated leucocyte cell adhesion molecule (CD166).
The results obtained in this study suggest that the TCR1640 model is a valuable asset
in the study of neuroimmune diseases such as multiple sclerosis. It could also be used to
validate new therapeutic strategies for the treatment of this disease.
|
10 |
Exploration of the Cerebral Dysfunctions Induced by Arterial Rigidity and/or the Overexpression of TGFβ in a Mouse ModelBloch, Sherri 06 1900 (has links)
No description available.
|
Page generated in 0.1225 seconds