• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Supported Transition Metal Oxide Catalysts for Low-Temperature NH3-SCR with Improved H2O-Resistance

Kasprick, Marcus 02 December 2019 (has links)
Stickoxide NOx werden von Menschenhand in verschiedenen Verbrennungsprozessen emittiert. Die selektive katalytische Reduktion mit Ammoniak (NH3-SCR) hat sich weltweit als wichtigste Methode zur Minderung von NOx-Emissionen etabliert. Derzeit erhältliche Katalysatoren für die NH3-SCR werden bei Temperaturen unterhalb von 473 K stark in Gegenwart von Wasser desaktiviert, welches unvermeidbar in Abgasen aus der Verbrennung von organischen Stoffen enthalten ist. In dieser Arbeit werden drei verschiedene Arten der Modifikation von SCR-Katalysatoren diskutiert, die eine gesteigerte H2O-Resistenz bewirken. Eine Methode ist die Verwendung von mischoxidischen Trägermaterialien, eine Andere ist eine mischoxidische aktive Komponente und schließlich eine postpräparative Oberflächenmodifikation mit Organosilylgruppen. Die Katalysatoren wurden sowohl auf ihre katalytische Aktivität als auch auf ihre adsorptiven, redox und andren Oberflächeneigenschaften untersucht. Die Wechselwirkungen zwischen H2O und der Katalysatoroberfläche wurden mittels temperaturprogrammierter Desorption (TPD), isothermaler Adsorption bei erhöhtem Druck und einer gravimetrischen Methode untersucht. Besonders die H2O-TPD hat sich als eine leistungsstarke Methode für diesen Zweck herausgestellt. Jede der drei Modifikationen bewirkte eine Verminderung der Wechselwirkungen zwischen H2O und der Katalysatoroberfläche. Neben einer allgemeinen Erhöhung der Aktivität eines SCR-Katalysators, wird die gezielte Verminderung dieser Wechselwirkungen als Schlüsselrolle in der Entwicklung von Katalysatoren mit verbesserter H2O-Resistenz angesehen. Jedoch gibt es zur Zeit kaum Publikationen, die diesen Zusammenhang behandeln. Daneben wurde auch die Bildung von N2O als ungewünschtes Nebenprodukt bei der SCR-Reaktion untersucht. Dessen Treibhauspotential entspricht ungefähr dem 300-fachen von CO2. Die Verwendung von einem mischoxidischem Trägermaterial kann die Freisetzung von N2O während der SCR verringern, was größtenteils auf die Unterdrückung der Bildung nach einem ER-Mechanismus zurückgeführt wurde. Auch die N2O-Bildung wird in vielen Publikationen über die Entwicklung von SCR-Katalysatoren nicht betrachtet.:0.1 Abbreviations 0.2 Symbols 1 Introduction and Objectives 2 Literature Overview 2.1 NH3-SCR 2.1.1 NH3-SCR Catalysts 2.1.2 Mechanisms of NH3-SCR Reaction 2.1.3 N2O-Formation under SCR-Conditions 2.2 Deactivation of NH3-SCR Catalysts 2.2.1 Deactivation by H2O 2.2.2 Deactivation by SO2 2.3 Low-Temperature NH3-SCR 2.3.1 Requirements and Challenges of LT-SCR 2.3.2 LT-SCR Catalysts 2.4 Silylation of Metal Oxide Surfaces 3 Experimental Section 3.1 Catalyst Preparation 3.1.1 Support Modification with Different Metal Oxides 3.1.2 Deposition of Active Component 3.1.3 Catalyst Modification with Organosilyl Groups 3.2 Catalyst Characterization 3.2.1 Texture Analysis 3.2.2 Phase Analysis 3.2.3 Elementary Analysis 3.2.4 Adsorption Properties 3.2.5 Surface Spectroscopy 3.2.6 Redox Properties 3.3 Catalytic Experiments 4 Results and Discussion 4.1 Impact of Mixed-Oxide Support on Catalyst Activity 4.1.1 Impact in Dry Gas-Flow: Reduced N2O-Emission 4.1.1.1 Catalytic Activity 4.1.1.2 Catalyst Characterization 4.1.1.3 Discussion 4.1.2 Impact in Wet Gas-Flow: Higher H2O-Resistance 4.1.2.1 Catalytic Activity 4.1.2.2 Catalyst Characterization 4.1.2.3 Discussion 4.1.3 Summary of SiO2-Impact 4.2 Mn-Ce Mixed-Oxide as Active Component 4.2.1 Catalytic Activity 4.2.2 Catalyst Characterization 4.2.3 Discussion and Summary 4.3 Catalyst Modification with Organosilyl Groups 4.3.1 Stability of Organosilyl Groups 4.3.2 Impact of Organosilyl Modification on H2O-Adsorption 4.3.3 Impact of Organosilyl Modification on Catalytic Activity in Pre- and Absence of H2O 4.3.3.1 Catalytic Activity 4.3.3.2 Catalyst Characterization 4.3.3.3 Discussion 4.3.4 Summary of Organosilyl Modification 4.4 Discussion on the Investigation of H2O-Adsorption 5 Conclusions and Outlook 5.1 Conclusions 5.2 Outlook 6 References 7 Appendix 7.1 Evaluation of H2O-Sorption Data through BET-Theory 7.2 Evaluation of Kinetic SCR Investigation 7.3 Calculation of the Average Oxidation State of Mnz+ from H2-TPR 7.4 Calculation of the Surface-Density of Mn 7.5 Supplementary Data 7.6 Scientific Contributions 7.7 Curriculum Vitae 8 Summary (german) 8.1 Einleitung 8.2 Experimentelles 8.3 Ergebnisse und Diskussion 8.3.1 Einfluss eines mischoxidischen Trägermaterials auf die katalytische Aktivität 8.3.2 Mn-Ce-Mischoxide als aktive Komponente 8.3.3 Modifikation von Katalysatoren mit Organosilyl-Gruppen 8.4 Schlussfolgerungen / Nitrogen oxides NOx were anthropogenically emitted by various combustion processes. The selective catalytic reduction with ammonia (NH3-SCR) has been established worldwide as the most important technique for the abatement of NOx . Currently available catalysts for NH3-SCR become strongly deactivated at temperatures below 473 K in presence of H2O which is unavoidable present in the exhaust gas arising from the combustion of organic matter. In this work three different kinds of a modification of an SCR-catalyst were discussed that cause a higher H2O-resistance. One is the application of a mixed-oxide support material, the other is a mixed-oxide active component and finally a post-preparative surface modification with organosilyl-groups. The catalysts were assessed for their catalytic activity as well as their adsorptive, redox and other surface properties. The interactions between H2O and the catalyst surface were investigated by means of temperature programmed desorption (TPD), isothermal adsorption at elevated pressure and a gravimetric method. Especially the H2O-TPD turned out to be a powerful method for this purpose. Each of the three modifications caused a reduction in the H2O-catalyst interactions. Beside a general increase of the activity of an SCR-catalyst, the purposeful reduction of these interactions is considered to play a key role in the development of catalysts with an enhanced H2O-resistance. However, there is a lack of publications that deal with this correlation. Also the formation of the unwanted by-product N2O was investigated. Its global warming potential is about 300-times that of CO2. The application of a mixed-oxide support can reduce the release of N2O during SCR which was attributed mainly to the suppression of the ER-type formation pathway. Also the N2O-formation is not considered in many publications dealing with the development of SCR-catalysts.:0.1 Abbreviations 0.2 Symbols 1 Introduction and Objectives 2 Literature Overview 2.1 NH3-SCR 2.1.1 NH3-SCR Catalysts 2.1.2 Mechanisms of NH3-SCR Reaction 2.1.3 N2O-Formation under SCR-Conditions 2.2 Deactivation of NH3-SCR Catalysts 2.2.1 Deactivation by H2O 2.2.2 Deactivation by SO2 2.3 Low-Temperature NH3-SCR 2.3.1 Requirements and Challenges of LT-SCR 2.3.2 LT-SCR Catalysts 2.4 Silylation of Metal Oxide Surfaces 3 Experimental Section 3.1 Catalyst Preparation 3.1.1 Support Modification with Different Metal Oxides 3.1.2 Deposition of Active Component 3.1.3 Catalyst Modification with Organosilyl Groups 3.2 Catalyst Characterization 3.2.1 Texture Analysis 3.2.2 Phase Analysis 3.2.3 Elementary Analysis 3.2.4 Adsorption Properties 3.2.5 Surface Spectroscopy 3.2.6 Redox Properties 3.3 Catalytic Experiments 4 Results and Discussion 4.1 Impact of Mixed-Oxide Support on Catalyst Activity 4.1.1 Impact in Dry Gas-Flow: Reduced N2O-Emission 4.1.1.1 Catalytic Activity 4.1.1.2 Catalyst Characterization 4.1.1.3 Discussion 4.1.2 Impact in Wet Gas-Flow: Higher H2O-Resistance 4.1.2.1 Catalytic Activity 4.1.2.2 Catalyst Characterization 4.1.2.3 Discussion 4.1.3 Summary of SiO2-Impact 4.2 Mn-Ce Mixed-Oxide as Active Component 4.2.1 Catalytic Activity 4.2.2 Catalyst Characterization 4.2.3 Discussion and Summary 4.3 Catalyst Modification with Organosilyl Groups 4.3.1 Stability of Organosilyl Groups 4.3.2 Impact of Organosilyl Modification on H2O-Adsorption 4.3.3 Impact of Organosilyl Modification on Catalytic Activity in Pre- and Absence of H2O 4.3.3.1 Catalytic Activity 4.3.3.2 Catalyst Characterization 4.3.3.3 Discussion 4.3.4 Summary of Organosilyl Modification 4.4 Discussion on the Investigation of H2O-Adsorption 5 Conclusions and Outlook 5.1 Conclusions 5.2 Outlook 6 References 7 Appendix 7.1 Evaluation of H2O-Sorption Data through BET-Theory 7.2 Evaluation of Kinetic SCR Investigation 7.3 Calculation of the Average Oxidation State of Mnz+ from H2-TPR 7.4 Calculation of the Surface-Density of Mn 7.5 Supplementary Data 7.6 Scientific Contributions 7.7 Curriculum Vitae 8 Summary (german) 8.1 Einleitung 8.2 Experimentelles 8.3 Ergebnisse und Diskussion 8.3.1 Einfluss eines mischoxidischen Trägermaterials auf die katalytische Aktivität 8.3.2 Mn-Ce-Mischoxide als aktive Komponente 8.3.3 Modifikation von Katalysatoren mit Organosilyl-Gruppen 8.4 Schlussfolgerungen
2

Impact des minéraux sodium et phosphore sur les propriétés de catalyseurs Cu/FER dédiés à la réduction sélective des oxydes d'azote par l'ammoniac / Impact of sodium and phosphorous on the properties of Cu/FER for the selective catalytic reduction of nitric oxides by ammonia

Tarot, Marie-Laure 04 May 2018 (has links)
Afin de limiter les rejets de polluants dans l’atmosphère par les véhicules, les normes Euro ont été mises en place en Europe à partir des années 1990. Ces normes sont de plus en plus strictes. Par exemple, pour les cas des poids lourds, le maximum d’émission des NOx a été divisé par cinq lors du passage Euro V (2009) à Euro VI (2014). Parallèlement à cela, certaines flottes captives de poids lourds roulent au 100 % biodiesel. Or, ce carburant contient des minéraux (Na, K, P) qui peuvent interagir avec la ligne de dépollution des gaz d’échappement.Dans ces travaux, l’étude a porté sur l’impact de Na et P déposés séparément ou simultanément sur des catalyseurs de réduction catalytique sélective des oxydes d’azote par l’ammoniac (NH3-SCR) à base de zéolithe Ferrierite (FER) contenant du cuivre.En mettant en relation les activités catalytiques en NH3-SCR et les différentes caractérisations mises en œuvre avant et après ajout des minéraux, il a été conclu que l’ajout de sodium entrainait une perte d’activité à basse température (< 300 °C) liée à l’empoisonnement des sites acides du catalyseur, et que la perte d’activité à haute température (> 450 °C) est liée à la formation de CuO. Cette formation de CuO est due à un échange entre le cuivre et le sodium lors de l’empoisonnement par voie aqueuse. Pour l’empoisonnement au phosphore, la désactivation à basse température (< 300 °C) apparait liée à une interaction entre le cuivre et le phosphore. Cette interaction entraine une augmentation de la température de réduction du cuivre. L’ajout simultané de sodium et phosphore entraine une désactivation des catalyseurs plutôt similaire à celle du phosphore qu’à celle du sodium. / In order to decrease the air pollution due to vehicles, European legislation have been implemented since the 90’s. The European norm are stricter. For example, the NOx emissions limit for trucks were divided by five between Euro V (2009) and Euro VI (2014). In parallel, some trucks use exclusively 100 % biodiesel. Unfortunately, biodiesel contains some minerals (Na, K, P) with can interact with the exhaust gas post-treatment system.This work presents the impact of Na and/or P deposits on Selective Catalytic Reduction catalysts with dedicated to the NH3-SCR process, based on copper/Ferrierite (FER).By combining the results of NH3-SCR catalytic activity and characterisations before and after adding minerals, the main parameters of deactivation were highlighted. Sodium deactivation at low temperature (< 300 °C) is due to the decrease of acidity. The deactivation at high temperature (> 450 °C) is due to the formation of copper oxide when sodium was added in water. This formation of CuO results of an exchange of Na and Cu in the exchange positions of the zeolite. Phosphorous addition mainly leads to a catalytic deactivation at low temperature (< 300 °C), the deactivation seems to be link to Cu-P interaction. This interaction leads to the increase of the reduction temperature of copper. Overall, the simultaneous addition of sodium and phosphorous leads to a decrease of catalytic activity similar to the one with phosphorous alone.
3

Studies on Transition Metal Oxide Catalysts for Waste Gas Treatment / 排ガス処理用遷移金属酸化物触媒に関する研究

Kuma, Ryoji 23 March 2021 (has links)
京都大学 / 新制・論文博士 / 博士(工学) / 乙第13403号 / 論工博第4189号 / 新制||工||1761(附属図書館) / (主査)教授 田中 庸裕, 教授 江口 浩一, 教授 阿部 竜 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
4

Analyse du couplage des fonctions de filtration des suies et de réduction des NOx pour moteur diesel / Analysis of coupling the selective NOx reduction and Diesel soot oxydation functions

Molina Gonzalez, Sonia 18 December 2017 (has links)
Les systèmes de post-traitement qui combinent diverses fonctionnalités dans un même dispositif catalytique sont considérées comme une solution efficace pour réussir l’objectif définie par les restrictives futures normes qui régulent les émissions de l'industrie automobile. Ils permettent non seulement de réduire les coûts intrinsèques dus à l’encombrement mais aussi, dans certains cas, de favoriser les réactions catalytiques par des effets thermiques ou synergiques. Ce concept est particulièrement étudié pour les moteurs Diesel dont la ligne d'échappement peut comprendre jusqu'à quatre éléments. La réduction des NOx peut être réalisée par réduction catalytique sélective de l'ammoniac sur filtre (NH3-SCRF) en utilisant des catalyseurs à base de zéolite échangée par Cu ou Fe. Ce filtre à suie catalysé assume simultanément deux fonctions: l'élimination des particules et la réduction des espèces de NOx vers N2 et de l’eau. En ce qui concerne les catalyseurs SCR, la couche active est classiquement déposée sur les parois d'un substrat de grande porosité dont les canaux sont bloqués à des extrémités alternatives. Une porosité accrue du substrat du filtre (tel que la cordiérite ou SiC) est nécessaire pour permettre le dépôt de la quantité de phase de catalyseur nécessaire pour le traitement des émissions gazeuses en assurant une filtration efficace et sans produire un effet de contre-pression du system. En plus, il est nécessaire de remarquer que des nouvelles réactions se produiront dans ce système puisque la suie Diesel, le NOx et l'agent réducteur sont présents dans la même unité pour la première fois. Selon la littérature actuellement disponible, les polluants et la suie peuvent interagir de trois manières principales: 1) la suie bloque l'accessibilité du flux gazeux aux sites actifs «classiques» du catalyseur; 2) possibilité de réduction des NOx sur les particules de suie; et enfin, 3) la présence de suie affecte les performances des réactions SCR ou, au contraire, les réactions SCR affectent le processus d'oxydation des particules jusqu'à ce que la compétition pour le NO2 soit produite / Aftertreatment systems that combine various functionalities into the same catalytic device are considered to be an efficient solution to reach the target defined by the restrictive future emission standards that regulate the automotive industry emissions. They are able not only to reduce the intrinsic costs due to the packaging but also, in some cases, to promote catalytic reactions by thermal or synergistic effects. This concept is being particularly explored for Diesel engines whose exhaust line may comprise up to four separate elements. NOx abatement can be accomplished by ammonia selective catalytic reduction on filter (NH3-SCRF) using Cu or Fe-exchanged zeolite-based as catalysts. This catalysed soot filter assumes two functions, simultaneously: removal of particles and reduction of NOx species towards N2. Regarding the SCR catalysts, the active layer is conventionally deposited onto the walls of a high porosity substrate whose channels are blocked at alternative ends. An increased porosity of the filter (such as cordierite or SiC) substrate is required to allow the deposition of the amount of catalyst phase needed for the treatment of gaseous emissions while efficient filtration and without producing a backpressure effect. Furthermore, it is necessary to remark that new reactions will occur in this system as Diesel soot, NOx and the reductant agent are present in the same unit for the first time. Accordingly to the literature currently available, there are three main ways that NOx pollutants and soot may interact: 1) soot blocking the accessibility of gas flow to “classic” active sites of the catalyst; 2) possibility of NOx reduction takes place over the soot particles; and finally, 3) soot presence affects SCR reactions performance or, contrarily, SCR reactions affects PM oxidation process as far as competition for NO2 will be produced
5

Étude des processus de formation et élimination du N2O lors de la Réduction Catalytique de NOx par le NH3 (NH3-SCR) / Study of the formation and elimination of N2O in the Selective Catalytic Reduction of NOx by NH3 (NH3-SCR)

Valdez Lancinha Pereira, Mafalda 15 December 2016 (has links)
Le projet de thèse a eu pour but l’étude de la formation et de l’élimination du N2O par des catalyseurs cuivre-zéolithe ou fer-zéolithe, utilisés pour le procédé de réduction catalytique sélective des NOx par l'ammoniac (NH3-SCR). Dans ce processus de réduction des NOx, les principales voies de formation de N2O sont la décomposition du nitrate d’ammonium (NH4NO3) et l’oxydation de NH3. L’étude bibliographique a montré une contribution plus importante de la décomposition du nitrate d’ammonium. La recherche s’est donc focalisée dans l’étude de la décomposition du nitrate d’ammonium en empruntant deux axes : la décomposition du NH4NO3 commercial et la formation in situ suivi de la décomposition du nitrate d’ammonium.Les catalyseurs, utilisés pour cette étude, ont été, tout d'abord, amplement caractérises par différentes techniques d’analyse physico-chimique afin de connaitre particulièrement la concentration et forme de déposition des métaux, l’acidité et la taille des cristaux.Après avoir abordé la décomposition du NH4NO3 commercial sans catalyseur, l'étude s'est orientée sur l'effet de l'interaction avec un catalyseur. La nature du gaz vecteur, les conditions hydrodynamiques et la quantité de NH4NO3 ont aussi été évaluées.La décomposition sous conditions statiques, i.e. sans entrainement du NH4NO3 liquide, conduit principalement le N2O. En revanche, les chemins réactionnels suivis sous conditions dynamiques dépendent du mode de déposition du nitrate d’ammonium. Les agrégats solides de nitrate d'ammonium en contact avec la surface externe du catalyseur se décomposent directement en N2O, surtout quand le nitrate d’ammonium liquide ne peut pas être entrainé par le gaz vecteur. L’absence de catalyseur favorise la décomposition vers l’azote par l’interaction entre le NH3 et du HNO3 libérés lors de la dissociation du NH4NO3. D’autre part, en présence d’un catalyseur, le NH3 formé tend à s’adsorber et à s’oxyder à plus haute température. La variation du gaz vecteur n'engendre pas d'effet significatif sur la décomposition du NH4NO3.La décomposition du nitrate d’ammonium formé in situ a été réalisée dans le but de se rapprocher des conditions du procédé NH3-SCR, où le nitrate d’ammonium se forme par l’interaction entre le NH3 et le NO2. La méthode expérimentale a été conçue pour maximiser la formation du nitrate d’ammonium selon les deux cas extrêmes pouvant être trouvés dans un système SCR : la saturation préalable du catalyseur en NH3 puis en NO2 (« NH3 experiment ») et l’inverse, saturation en NO2 puis NH3 (« NO2 experiment »). Dans ce cas plusieurs catalyseurs ont été préparés afin d’isoler certaines caractéristiques et évaluer leur impact. Les effets de la teneur en cuivre, du type de métal (Cu ou Fe), de la structure de la zéolite (CHA ou FER), de la méthode de préparation, de l’atmosphère de calcination et du gaz vecteur pendant la décomposition ont été étudiés. Les effets obtenus ont été corrélés avec les résultats de la caractérisation physicochimique des catalyseurs afin de déterminer les paramètres prépondérants des différences observées.La formation du N2O lors du « NH3 experiment » est toujours plus importante que celle obtenue dans le « NO2 experiment » et dépend fortement de la concentration en sites acides de Brönsted quelle que soit la structure de la zéolithe. En revanche, dans le « NO2 experiment », ce sont plutôt les espèces métalliques et sa localisation qui influencent la décomposition du nitrate d’ammonium. La taille des cristaux a aussi une influence. La méthode de préparation et l’atmosphère de calcination n’ont pas un effet très significatif. Le gaz vecteur influence seulement les émissions à haute température : la formation du N2O est plus importante en présence d’oxygène. / The thesis project focused on the study of the formation and elimination of N2O by copper-zeolite or iron-zeolite catalysts, used for selective catalytic reduction of NOx with ammonia (NH3-SCR). In the NOx reduction process the main N2O formation routes are the decomposition of the ammonium nitrate (NH4NO3) and the NH3 oxidation. Still, a literature review showed a more important contribution from the decomposition of ammonium nitrate. Therefore, the study was then concentrated on the decomposition of the ammonium nitrate in two axes: the decomposition of commercial NH4NO3 and the in situ formation followed by decomposition of ammonium nitrate.Besides, the catalysts used for this study, have been thoroughly characterized by different physicochemical techniques in order to, particularly, assess the concentration and deposition form of metals, the acidity and the size of the crystals.After performing the decomposition of commercial NH4NO3 without catalyst, the study has focused on the effect of interaction with a catalyst. The effect of the carrier gas, the hydrodynamic conditions and concentration of NH4NO3 were also studied.Under static conditions, i.e. without liquid NH4NO3 entrainment, the decomposition of the commercial ammonium nitrate mostly leads to N2O. In contrast, the reaction pathway under dynamic conditions depends on the deposition method of ammonium nitrate onto the catalyst. The solid aggregates in the outer surface of the catalyst decompose directly to N2O, especially when the liquid ammonium nitrate cannot be entrained by the carrier gas. The absence of a catalyst promotes the decomposition into nitrogen, formed by the interaction between the NH3 and HNO3 released upon the dissociation of NH4NO3. On the other hand, in the presence of a catalyst NH3 tends to adsorb and to be oxidized at higher temperatures. The carrier gas composition did not have a significant effect in the decomposition of NH4NO3.The decomposition of ammonium nitrate formed in situ was performed in order to get closer from what happens under SCR conditions, where the ammonium nitrate is formed by the interaction between NH3 and NO2. The experimental method was designed to maximize the formation of ammonium nitrate according to the two extreme conditions that may be found in a SCR system: firstly catalyst saturation by NH3 and then by NO2 (“NH3 experiment”) and then the reverse, saturation by NO2 and then by NH3 (“NO2 experiment”). In this study several catalysts were prepared in order to isolate certain characteristics and assess their impact. The effects of the copper loading, the type of metal (Cu and Fe), the structure of the zeolite (CHA or FER), the method of preparation, the calcination atmosphere and the carrier gas during decomposition were studied. These effects were correlated to the results of the physico-chemical characterization of the catalysts with the purpose of find the cause of the faced differences.The formation of N2O during the “NH3 experiment” is always greater than that obtained on the “NO2 experiment”, and strongly depends on the concentration of the Brönsted acid sites, regardless the zeolite structure. However, on the “NO2 experiment”, it is rather the metal species and its location that influence the decomposition of ammonium nitrate. The size of the crystals also has an influence. The preparation method and the calcination atmosphere do not have a significant effect. The carrier gas impacts on the high temperature emission: the formation of N2O is greater in the presence of oxygen.
6

Étude d’un catalyseur commercial de NH3-SCR à base de zéolithe échangée au cuivre : activité catalytique, sélectivité, stabilité hydrothermale / Study of a commercial copper-exchanged zeolite based catalyst for NH3-SCR : catalytic activity, selectivity, hydrothermal stability

Kieffer, Charlotte 13 December 2013 (has links)
La Réduction Catalytique Sélective (SCR) par l'ammoniac, ou l'urée, est un procédé connu de post-traitement permettant de réduire efficacement les oxydes d'azote émis par les motorisations Diesel, en azote et en eau. Les zéolithes échangées au cuivre sont parmi les meilleures formulations pour une application sur véhicules légers, puisque efficaces sur une large zone de température. Le but de cette thèse était d'étudier la stabilité hydrothermale de ce type de catalyseur. L'approche utilisée au cours de ce travail repose sur l'étude des différentes fonctionnalités d'un catalyseur commercial de NH3-SCR présent sous forme de monolithe, à l'état frais et pour différentes conditions de vieillissement, au Banc Gaz Synthétique couplée à une analyse physico-chimique précise de la phase active du catalyseur. Ceci nous a permis de comprendre les phénomènes de désactivation intervenant au cours d'un vieillissement hydrothermal et de mesurer leur impact sur l'activité et la sélectivité de ce type de catalyseur. Après traitement hydrothermal, on assiste à une désalumination plus ou moins importante de la zéolithe, pouvant conduire à l'effondrement de sa structure, ainsi que d'importantes modifications au niveau du cuivre dès les plus faibles températures de vieillissements. Les résultats ont montré l'importance de maintenir une teneur minimal de cuivre en position d'échange, afin de conserver une capacité de stockage en ammoniac suffisante, mais surtout pour garantir une bonne efficacité à basse température en SCR du NO. Le maintien de la structure de la zéolithe semble essentiel pour que le catalyseur conserve une bonne efficacité et sélectivité au cours du temps. / The Selective Catalytic Reduction (SCR) by ammonia, or urea, is a well-known after-treatment process used for converting efficiently the nitrogen oxides, emitted by Diesel engines, into nitrogen and water. Copper-exchanged zeolites are among the most efficient formulations for light-duty applications, since effective over a wide temperature-range. The aim of this thesis is to study the hydrothermal stability of this type of catalyst. The approach used is this work is based on the study of the catalytic properties of a fresh commercial monolith catalyst for NH3-SCR in fresh and after different ageing conditions, at synthetic gas test bench, coupled with a comprehensive physicochemical analysis of the catalyst active phase. This allowed us to understand the deactivation phenomena occurring during a hydrothermal ageing and the impact on the catalyst activity and selectivity. A hydrothermal treatment induces a dealumination of the zeolite, into a more or less significant extent, which can lead to its collapse, as well as important modifications of the copper sites, even at low ageing. The results showed the importance to maintain a minimal copper content into exchanged sites, in order to retain a sufficient ammonia storage capacity, and especially to provide a good efficiency for the SCR of NO at low temperature. The preservation of the zeolite structure seems to be essential in order to maintain the catalyst efficiency and selectivity over time.
7

Approche par la microcinétique expérimentale du procédé NH3-SCR sur catalyseurs V2O5-WO3/TiO2 modèles et industriels / Experimental microkinetic approach of NH3-SCR process over V2O5-WO3/TiO2 catalysts for the removal of NOx emitted by coal power plants

Giraud, Francois 05 November 2014 (has links)
La présente étude a pour objectif l'obtention d'une équation donnant la vitesse globale de la réaction (activité catalytique) de la réaction NH3-SCR sur des catalyseurs du type V2O5/WO3/TiO2 (a) utilisable pour des conditions expérimentales (pressions partielles des réactifs et des constituants du mélange gazeux et températures) réalistes des conditions des rejets gazeux des centrales à charbon et (b) capable de rendre compte des effets d'empoisonnements chimiques du catalyseur. Cette équation sera implantée dans un logiciel de modélisation de l'évolution des performances des catalyseurs industriels développé par EDF. Pour remplir ces objectifs, les outils et les procédures pour l'approche microcinétique expérimentale ont été appliqués. La caractérisation de la première étape clé qui consiste à adsorbé le réactif NH3 à la surface du catalyseur (type d'adsorption, chaleurs d'adsorption de chaque espèce) a nécessité le développement de la méthode AEIR (initialement adaptée à la caractérisation de CO adsorbé sur des particules métalliques). La réactivité des espèces NH3 adsorbées vis-à-vis des différents réactifs (H2O, NOx, O2) a ensuite été étudiée, conduisant à l'élaboration d'un mécanisme cinétique plausible. A partir de ce mécanisme, un modèle cinétique de la réaction NH3-SCR a été développé et comparé aux données expérimentales obtenues sur catalyseurs modèles et commerciaux. Dans la suite de l'étude, les impacts de plusieurs poisons sur les paramètres contrôlant la cinétique de la réaction ont été déterminés expérimentalement. Dans une dernière partie, un modèle permettant de modéliser les performances catalytique de monolithes a été développé (en intégrant le modèle cinétique mis en place au cours de cette étude) et comparé à des données expérimentales / The aim of the study is to obtain an equation for the overall reaction rate of the NH3-SCR reaction over V2O5/WO3/TiO2 catalysts (a) used for the experimental conditions (partial pressure of components of the gas mixture and temperature) realistic conditions of discharges from coal power plant and (b) able to take into account the chemical poisoning effects of the catalyst. This equation will be implemented in software developed by EDF for modeling the evolution of the performance of industrial catalysts. To fulfill these objectives, tools and procedures for the experimental microkinetic approach were applied. The characterization of the first key step of the reagent adsorbed NH3 on the surface of catalyst (type adsorption, heats of adsorption of each species) has necessitated the development of the AEIR method (initially adapted to the characterization of CO adsorbed on metal particles). The reactivity of the NH3 adsorbed species to the various reagents (H2O, NOx, and O2) was then studied, leading to the development of plausible kinetic mechanism. From this mechanism, a kinetic model of the NH3-SCR reaction has been developed and compared to experimental data obtained on model and commercial catalysts. In the remainder of the study, the impacts of several poisons to parameters that control the kinetics of the reaction were determined experimentally. In the last part, a model of catalytic monoliths performances was developed (by integrating the kinetic model developed in this study) and compared to experimental data
8

Influence of Framework n(Si)/n(Al) Ratio on the Nature of Cu Species in Cu-ZSM-5 for NH3-SCR-DeNOx

Jabłońska, Magdalena, Góra-Marek, Kinga, Bruzzese, Paolo Cleto, Palčić, Ana, Pyra, Kamila, Tarach, Karolina, Bertmer, Marko, Poppitz, David, Pöppl, Andreas, Gläser, Roger 05 August 2024 (has links)
Nanosized Cu-containing ZSM-5 catalysts with different n(Si)/ n(Al) ratio of 18.9–50.5 were prepared by ion-exchange. The physico-chemical characterization clearly shows that the molar ratio of framework T atoms influences the nature and distribution of copper species. According to DR UV-Vis, TPR-H2, EPR, or FT-IR spectroscopy analyses, the amount of aggregated copper species increases with increasing the framework n(Si)/n(Al) ratio. Thus, the activity of the Cu-containing ZSM-5 with n(Si)/n(Al) ratio of 47.0—50.5 in the selective catalytic NO reduction with NH3 (NH3-SCR-DeNOx) significantly decreases compared to the other materials (n(Si)/n(Al) ratio of 18.9—19.6). The reaction mechanism has been discussed in light of the results of 2D COS (two-dimensional correlation spectroscopy) analysis of IR spectra and catalytic properties of the zeolites. The results make evident that enhanced activity of Cu-containing ZSM-5 in NH3- SCR-DeNOx is correlated with the formation of different NOx under the experimental conditions.
9

Effect of Textural Properties and Presence of Co-Cation on NH3-SCR Activity of Cu-Exchanged ZSM-5

Jabło´nska, Magdalena, Góra-Marek, Kinga, Grilc, Miha, Bruzzese, Paolo Cleto, Poppitz, David, Pyra, Kamila, Liebau, Michael, Pöppl, Andreas, Likozar, Blaž, Gläser, Roger 03 May 2023 (has links)
Comparative studies over micro-/mesoporous Cu-containing zeolites ZSM-5 prepared by top-down treatment involving NaOH, TPAOH or mixture of NaOH/TPAOH (tetrapropylammonium hydroxide) were conducted. The results of the catalytic data revealed the highest activity of the Cu-ZSM-5 catalyst both in the absence and presence of water vapor. The physico-chemical characterization (diffuse reflectance UV-Vis (DR UV-Vis), Fourier transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, temperature-programmed desorption of NOx (TPD-NOx), and microkinetic modeling) results indicated that the microporous structure of ZSM-5 effectively stabilized isolated Cu ion monomers. Besides the attempts targeted to the modification of the textural properties of the parent ZSM-5, in the next approach, we studied the effect of the co-presence of sodium and copper cations in the microporous H-ZSM-5. The presence of co-cation promoted the evolution of [Cu–O–Cu]2+ dimers that bind NOx strongly with the desorption energy barrier of least 80 kJ mol−1. Water presence in the gas phase significantly decreases the rate of ammonia oxidation, while the reaction rates and activation energies of NH3-SCR remain unaffected.
10

Nanosized Cu-SSZ-13 and Its Application in NH3-SCR

Palˇci´c, Ana, Bruzzese, Paolo Cleto, Pyra, Kamila, Bertmer, Marko, Góra-Marek, Kinga, Poppitz, David, Pöppl, Andreas, Gläser, Roger, Jabło´nska, Magdalena 17 April 2023 (has links)
Nanosized SSZ-13 was synthesized hydrothermally by applying N,N,N-trimethyl-1-adamantammonium hydroxide (TMAdaOH) as a structure-directing agent. In the next step, the quantity of TMAdaOH in the initial synthesis mixture of SSZ-13 was reduced by half. Furthermore, we varied the sodium hydroxide concentration. After ion-exchange with copper ions (Cu2+ and Cu+), the Cu-SSZ-13 catalysts were characterized to explore their framework composition (XRD, solid-state NMR, ICP-OES), texture (N2-sorption, SEM) and acid/redox properties (FT-IR, TPR-H2, DR UV-Vis, EPR). Finally, the materials were tested in the selective catalytic reduction of NOx with ammonia (NH3-SCR). The main difference between the Cu-SSZ-13 catalysts was the number of Cu2+ in the double six-membered ring (6MRs). Such copper species contribute to a high NH3-SCR activity. Nevertheless, all materials show comparable activity in NH3-SCR up to 350 °C. Above 350 °C, NO conversion decreased for Cu-SSZ-13(2–4) due to side reaction of NH3 oxidation.

Page generated in 0.035 seconds